A Unified Formal Foundation for Service Oriented
Architectures

Frank Puhlmann

Business Process Technology Group
Hasso-Plattner-Institute for IT Systems Engineering
at the University of Potsdam
D-14482 Potsdam, Germany
frank.puhlmann@hpi.uni-potsdam.de

Abstract: This paper summarizes how an algebra for mobile systems, the 7-calculus,
can be applied as unified formal foundation to service oriented architectures (SOA).
The concepts accounted are orchestrations including data and processes, as well as
choreographies consisting of interacting processes. Since SOAs incorporate agile
binding of interaction partners, static process structures as found in Petri nets are
not sufficient for completely representing orchestrations and choreographies. The
m-calculus, in contrast, inherently supports link passing mobility required for agile
interacting processes.

1 Introduction

Service oriented architectures (SOA) as introduced by Burbeck in [BurOO] consists of
three major roles. A service provider publishes information about the services it offers at
a service broker, where in turn they can be found by service requesters. Once a service
requester decides to incorporate a service provider, it dynamically binds to it. While today
there exist many standards from the WS-stack (e.g. [CCMSO01} W3C04, BEAO3])) that
describe how certain aspects of a SOA can be implemented, as well as scientific research
regarding specific areas (e.g. [VAWOI, Mar05| [SBS04]), a unified formal foundation for
service oriented architectures is still missing. None of the existing standards is based on
a common formal foundation, and most of the scientific approaches utilize either Petri
nets or proprietary formalizations. Since this leads to a lack of common understanding
and continuous research, this paper summarizes our results on investigating an algebra for
mobile systems, the 7-calculus [MPW92]], as a unified foundation for SOA. In contrast
to Petri nets [Pet62], the m-calculus inherently supports link passing mobility required for
dynamic binding in agile interactions.

Figure [T] depicts link passing mobility. The left hand side shows the three different roles
of a SOA, denoted as circles. A service requester (R) knows a service broker (B), denoted
by the line (link) between, where the dot denotes the target. The service broker, in turn,
has knowledge about a number of service providers (P). The service broker evaluates the

v
Bank

Broker
wl_
2 8
3 X
> c
K]

©

<+ --=-==--1+--

Customer

Figure 2: An example choreography in BPMN notation.

request of the service requester and returns the corresponding link. The service requester
then uses this link to dynamically bind to the service provider. Hence, the link structure of
the example changes over time as shown at the right hand side of the figure.

The remainder of this paper introduces how the m-calculus can be used to represent data
and processes required for orchestrations as well as additional ingredients to interactions
such as correlations required for choreographies. It is supplemented by a running exam-
ple and a section presenting application areas. We start by extending the motivation and
introduce the m-calculus.

2 Motivation and Related Work

Figure[2]contains a choreography in BPMN [BPMO04| notation. The choreography consists
of the purchase process of a Customer. It dynamically includes a Bank found by a Broker if
the purchase is above a threshold value. The Customer’s pool shows the purchase process.
First a data-based decision is made between the upper and lower part of the process. If
the price of the purchase is lower then a given value, the purchase is made directly. If the
price is above, a Broker is contacted to find a Bank with the lowest interests regarding the

purchase. Thereafter, the credit is requested at the Bank. In the considered scenario, the
Bank can send two possible answers, either accept or reject the credit. This is evaluated
in the Customer’s process using a deferred choice. Based on the decision of the Bank, the
purchase is made or rejected.

While the example choreography looks like a static interaction between Customer, Broker,
and Bank, it is indeed an agile one. Only the Broker is known at design time, so it is directly
coded into the Find Bank activity. However, the credit request relies on the answer of the
Broker’s lookup. Thus, the Customer’s process dynamically binds to a certain Bank only
known at runtime. The example contains typical ingredients of a SOA: internal processes
with data (orchestrations) as well as static and dynamic interactions (choreographies).

The example can be discussed using approaches ranging from Petri nets to process alge-
bra as well as existing standards. Petri nets have a long tradition for formalizing business
processes [vAvVHO2]. They have also been extended to support distribution, e.g. Weske et
al. in [VAWOI1]. Recent work investigated the representation of services and compatibil-
ity, e.g. Martens using usability in [Mar03|], refined by Massuthe et al. using operating
guidelines in [MRS03]. However, regarding distributed business processes, Petri net based
approaches have two major drawbacks. First, they do not support more advanced routing
pattern required for real-world business processes [vAtHO3|]. Second, they do not sup-
port interaction patterns that require dynamic binding [BDtHOS]. Regarding the given
example, only simple routing patterns are contained that cause no problems. However,
the dynamic binding would generate infinite Petri nets if we assume an unknown number
of possible participants. Extensions for special cases are possible but have a low general
adequacy. Process algebra based approaches often neglect mobility aspects [BSOS[], but
even if they consider it, there exist no investigations on full adequacy regarding advanced
routing patterns. Thus, there exist no process algebra based approach until now that has
been scientifically investigated regarding distributed business processes. Our motivation
on investigating the 7-calculus can be found in [Puh0O6].

3 The 7w-calculus

The m-calculus is based on a labeled transition system given by (P, T, —t>), where P repre-
sents the set of states, i.e. all possible process descriptions, 7" is a set of transition labels,
and -5 is a transition relation for each t € T. To get started with the m-calculus, knowl-
edge about process structures is sufficient, while the semantics can be used informally.
Inside m-calculus processes names are used to represent links or pointers. Processes are
denoted by uppercase letters and names by lowercase letters. The processes (i.e. states) of
the m-calculus are given by:

Pu=M|P|P |vzP |'P| Py, ,Yn)
M:=0|n.P|M+M €}
ma=T(G) | 2(Z2) [7] [z = ylr.

The informal semantics is as follows: P|P’ is the concurrent execution of P and P’, vz P
is the restriction of the scope of the name z to P, ! P is an infinite number of copies of
P, and P(y1,- - ,yn) represents recursion. O is inaction, a process that can do nothing,
M + M’ is the exclusive choice between M and M’. The output prefix Z(j).P sends a
sequence of names ¢ via the co-name T and then continues as P. The input prefix z(Z)
receives a sequence of names via the name x and then continues as P with Z replaced
by the received names (written as {"9™¢/:}). Matching input and output prefixes might
communicate, leading to an interaction. The unobservable prefix 7. P expresses an internal
action of the process, and the match prefix [z = y|7.P behaves as 7. P, if x is equal to y.

4 Unification

This section discusses, based on the example previously introduced, how the w-calculus
can be used as a unified formal foundation for service oriented architectures. It starts by
formalizing data, followed by processes, and is concluded by interactions.

4.1 Data

While the 7-calculus is a process algebra and states are denoted as a syntactical description
of a process given by the grammar from equation([T] it still allows for representing arbitrary
data structures. Since pointers in the m-calculus are represented by names, names are used
as accessors for data structures represented by processes. But how can static data like a
boolean value be represented in the 7-calculus? A straightforwards way is defining two
restricted names for true and false, i.e. (vT) for true and (v_L) accordingly for false.
These names are globally accessible by all processes inside the system, e.g.

SYSTEM = (vT, L)(A| B)
A =7.(ch(T).A+ ch(L).A)
B = ch(z).([x = T|7.B' + [z = 1]7.0) .

The process SY STEM first creates two restricted names used for true and false and
thereafter starts the processes A and B in parallel. However, only A can start execution
immediately in the example, since B waits for a name x on ch. A does some internal
calculation denoted by 7 and thereafter sends either true or false via the name ch. In both
cases, process A continues execution using recursion. Process B receives the name, where
technically the placeholder x is replaced by the received name, i.e. either T or L. So, if A
has sent T, B evolves as follows:

ch(@).(jx = T)r.B' + [z = 1]t.0) "5 [T = T}r.B' + [T = 1]r0.

Since T # L, only one possibility of the choice for B remains, making it deterministic (B
executes 7 and thereafter B’). If A had send L instead, the second part of B would have

been executed. When looking at ch as a pointer, it clearly points to a process (A), that is
able to return either true or false. Consequently, the fype of the name ch can be said to be
boolean, since it always points to a process representing boolean values in the example.
By comparing two names of the type boolean, an AN D process can be constructed:

AND = and(bl,b2,resp).bl(x).b2(y).([

Ty = T)resp(T).AND+
L]resp(L). AN D+
ljresp(Ll).AND) .

T
x
ly
The AN D process is invoked via and with three parameters: Two names b1 and b2 rep-
resenting pointers to booleans, and a third name used as response channel. First, AN D
fetches the actual values of the boolean pointers. Second, it returns true if both names, b1
and b2, are true and false otherwise. A possible extension for representing a byte instead
of a boolean would be for A to return eight parameters of either true or false instead of
one: ch(Ll, 1, T, 1, T, 1, T,L) (representing decimal 42). One can now construct sim-
ilar processes for adding, subtracting, or comparing bytes. Using these, other types can
be implemented. Based on the observations made, we define a syntactical refinement to
the m-calculus, namely typed names. A name is typed using common data types such as
vi : Integer. We further on introduce [z == y], [z < y], [z > y], and [z # y] for typed
names similar to their obvious meaning. Technically, each of these construct is expanded
to (Vresp)DroCiype (T, y, resp), where prociyy. calls a process for the corresponding op-
eration and data type similar to AN D.

After it has been shown how data can be represented in the 7-calculus, it remains open
how it can be made persistent, i.e. allowing for memory cells, stacks, queues, lists, and so
on. A memory cell able to capture and allow modification of a single m-calculus name is
denoted as:

CELL =!(vc)cell{c).CELLy (1)
CELLy(n) =¢(n).CELLy(n) + ¢(x).CELL;(x) .

The process CELL is replicated each time a fresh, restricted name c is read using cell.
A new memory cell is initialized with the default name L (false). The name c retrieved
is then used as read and write accessor to the cells content. Thus, using ¢ as an output
prefix, the content of the memory cell can be changed, while using c as an input prefix, the
content is read. Based on the memory cell, arbitrary data structures can be defined in the
m-calculus.

4.2 Processes

After having introduced the core foundations for each information system, namely data,
the representation of business processes in the 7-calculus is investigated. Business pro-
cesses are composed out of routing patterns that specify the control flow between activi-
ties. Examples are Split, Join, Discriminator, or patterns representing Multiple Instances
of activities. A widely acknowledged catalogue of such patterns has been published by

van der Aalst et al. [VAtHKBOO] as Workflow Patterns. In [PWO0S] we have shown how
all these patterns can be represented in the 7-calculus. In [OPWO0S5] the pattern catalogue
is extended by another pattern common in distributed business processes, called Event-
based Rerouting. In general, each activity (including gateways etc.) of a business process
is mapped to a w-calculus process, according to the following structure:

{zi}Z {la = b]}7 .7 {i}71.0 - 2)

Curly brackets are used to denote a static sequence of actions, the same holds for [and >
for products and summations. Each activity consists of pre- and postconditions for routing
the control flow using m-calculus names. The (abstracted) functional perspective of the
activity is represented by the unobservable action 7. The precondition is split into two
part: (1) {x;}7*, denotes that the activity waits for m incoming names, and (2) {[a = b]}}
denotes n additional guards that have to be true to execute the activity. The postcondition
denotes the triggering of o outgoing names, i.e. {7;}?_;. It is notable that the w-calculus
representation replaces the type vs. instance view of business processes by a prototypical
approach. Business processes are described formally in 7-calculus and duplicated for
execution.

By looking at the example again, the Workflow Patterns found in figure [2] are Sequence
(BPMN sequence flow), Exclusive Choice and Simple Merge (BPMN exclusive OR gate-
ways), as well as Deferred Choice (BPMN event-based gateway). A Sequence between
two activities is represented by two different 7w-calculus processes:

A=14b0 B=b15B,

where A signals the name b as a postcondition to B, that in turn can start execution. To
make the formalization actually work, a third process, representing the composed system
is required:

SYSTEM = (vb)(A | B) .

Such a process is assumed for all further Workflow Patterns. An Exclusive Choice between
two different activities B and C' after an activity A is represented by:

A=74.(b.0+20) B=brg.B C=crc.C.

Note that the pattern given makes a non—deterministic choice between B or C. However,
by using techniques such as [x == y] as shown in the previous section, the choice can
be made deterministic. The Simple Merge pattern waits for either one of the preceding
activities, e.g. activity D waits for either B or C".

B:TB.CITLO C:Tc.dig.o D:dl.TD.D/—‘rdg.TD.D/.
A Deferred Choice pattern defers the decision until an external event occurs:
A =74.(beny.b.0 4 Cenp.c.0) B=brg.B C=cr1c.C".

After all patterns required for the example have been defined, the orchestrations from
figure [2] can be formalized in m-calculus. Basically, each orchestration can be seen as a

B1 B2 B3
b1 Lookup b2 e
Banks
O

Broker
Bank

Customer

c10
Reject

Figure 3: Example choreography annotated with identifiers.

strongly connected graph with exactly one initial and one final node. The nodes of the
graph represent activities, events, or routing elements, while the edges represent depen-
dencies between them. Each node has a semantics, e.g. an activity can be executed, an
event can be consumed, or a routing decision can be made. Obviously, the semantics is
given to the nodes by using the 7-calculus pattern formalizations according to the follow-
ing simplified algorithm:

e Assign all nodes of the graph a w-calculus process identifier.

e Assign all edges of the graph a unique m-calculus name.

e Define the 7-calculus processes according to the m-calculus mapping of the Work-
flow Patterns found in [PWOS, [OPWO03] as given by the type of the corresponding
node. Each functional part of an activity is represented by the unobservable prefix 7
since it is abstracted from concrete realizations.

e Define a global process that places all m-calculus processes representing nodes in
parallel. (]

An extended mapping approach from BPMN to m-calculus can be found in [PW06]. Re-
garding the example, we first have to annotate each node of the graphs representing the
orchestrations with a m-calculus process identifier and each flow with a 7-calculus name.
The result is shown in figure 5] We also annotated the BPMN message flows, however
this is not required until the complete choreography is defined in the next subsection. The
global process (orchestration) of the broker is a quite simple:

BROKER = (vbl,b2)(B1(b1) | B2(b1,b2) | B3(b2)) ,
with the following components representing the nodes:

B1(b1) = 751.51.0 B2(b1,b2) = bl.752.52.0 B3(b2) = b2.755.0 .

Initially, all nodes are placed in parallel in process BRO K E R. However, only component
B1 can start immediately, since all other components require preconditions denoted by 7-
calculus names. The orchestration of the bank contains an exclusive decision that is not
further specified. Due to space limitations, we only show the important 7-processes:

S52(s1,2,53) = s1.792.(52.0 + $3.0)
S5(s4, 55, 56) = s4.755.56.0 + $5.755.56.0 .

The orchestration of the customer extends the representation of a decision node by taking
data values into account, thus making the decision deterministic Again, we showcase the
relevant process:

C2(cl, 2, c3) = cl(value).te2.([value > 999]¢2.0 + [value < 1000]c3.0) .

The m-calculus process C'2 representing a data-based exclusive choice receives the value
to be evaluated from the preceding process. Based on the value, the decision is made. Note
that value is a pointer to a process representing a real number. Furthermore, [value > 999]
and [value < 1000] are just placeholders for data-evaluation processes as introduced in
the previous section. The representation of the event-based gateway will be given in the
next subsection, since the decision is based on interactions between the customer and the
bank.

4.3 Interaction

Agile choreographies, as contained in the example, are closely linked to the Service In-
teraction Patterns by Barros et al. [BDtHOS]. These patterns describe possible behavior
inside choreographies. Examples are Send and Receive, or Dynamic Routing, where the
next interaction partner is determined by the current activity. In [DPW06] we have shown
how the interaction patterns can be represented in the 7-calculus. A synchronous service
invocation is denoted as follows:

A=b(msg). A" B =b(msg).B",

where A is the service requester and B is the service provider. The formalization leaves it
open if A knows the link b since design time or acquired it during runtime. If it is defined
as

S=(vb)(A|B),

A and B share the link b since design time. Using link passing mobility in 7-calculus, we
can model a repository R = lookup(b).R that transmits the link at runtime:

S = (vilookup)(lookup(b).A | ((vb)B | R)) .

A common problem in the area of service oriented architectures is the description of corre-
lations between service requesters and service providers. Usually, some kind of correlation

I'This does not imply that the bank makes non-deterministic choices. However, the algorithm is not contained
in the (abstract) orchestration.

identifier is placed inside each request and reply. The invoker as well as the provider have
to take care to match all requests. In the m-calculus, the unique identifier of a request
is also the channel used for reply from the service. By merging these two concepts, a
clear representation of the correlations is straightforward. A new unique identifier is a
m-calculus name, which is created with the v operator. A refined treatment of this topic
can be found in [OPWO3]).

After having introduced the prerequisites, we are now ready to construct a complete for-
malization of the example. As already hinted in the previous subsection, the identifiers of
the message flows between the different participants will be used therefore. First of all,
the Find Bank activity of the Customer contacts a Broker known at design time. Therefore
it uses a 7w-calculus name broker that contains a restricted name ch used as a response
channel:

C3(c2,c4,broker) = (vch)c2.broker(ch).ch(bank).7cs.c4(bank).0 .
The m-calculus processes of the broker have to be changed accordingly:

B1(b1, broker) = broker(ch).7p1.b1{ch).0
B2(b1,b2, banklist) = bl(ch).banklist(bank).b2(ch, bank).0
B3(b2) = b2(ch, bank).7p3.ch{bank).0 .

This time, the Broker can not immediately start working because B1 is waiting for an
external request on the name broker. The name banklist in B2 is a pointer to a priority
list filled with Banks sorted by interests. By reading from this list a pointer to the Bank
with the lowest interest is returned (i.e. the first item of the list). Finally, the pointer to the
Bank is returned via ch in B3.

The Customer’s deferred choice between Accept and Reject processing is implemented by
C6, while the bank is first contacted at C5 (Credit Request):

C5(c4,c6) = (vreq, acc,rej)cd(bank).7cs.bank(req, acc, rej).c6{acc, rej).0
C6(c6,cT,c8) = cb(acc,rej).Tcq-(acc.c7.0 + rej.c8.0) .

The names acc and rej are used as environmental triggers for deciding the deferred choice.
, whereas req represents the request. The complete choreography of the example is given
by:

CHO(banklist) =(vbroker)(BROK ER(broker, banklist) |
CUSTOMER(broker)) ,

with all the different Banks reachable over the banklist pointer. Note that the actual man-
agement of the Banks such as adding or removing, is not contained inside the choreogra-
phy. New Banks can register at runtime, whereas existing ones can withdraw or change
their credit offers and conditions.

Other space

Our space

Send
Credit
Response
Receive and
° Display Answer

Send
Credit
Request

Receive
Credit
Request

Timeout

Figure 4: A distributed view of a service oriented architecture.

5 Application

The previous sections stated how the m-calculus can be used to model data, processes,
and interactions found in service oriented architectures. Beside providing a uniform, un-
ambiguous description of service oriented architectures, two further applications are of
particular concern. The first one is execution and simulation, whereas the second one is
reasoning.

Since the 7-calculus is able to support data, orchestrations, as well as choreographies
within one single algebra it can be seen as the least common denominator of service ori-
ented architectures. Especially the direct support of dynamic binding by link passing mo-
bility distinguishes the m-calculus from other approaches. By taking into account the re-
sults shown, execution environments for service oriented architectures should be based on
the same concepts as the 7-calculus. This minimal set of concepts already supports data,
processes, and interactions as the core ingredients of service oriented architectures. Of
course, the m-calculus is not applicable to business users or even most information tech-
nology experts. Thus, higher level constructs have to be introduced that can be broken
down to m-calculus if required. For instance, a business process modeler uses the BPMN
to model a business process that is then automatically mapped to m-calculus expressions
for execution. Other results are more of a theoretical nature, for instance the representa-
tion of data types in the m-calculus. While a name can easily represent a pointer to some
kind of data, such as an integer, the actual implementation has to be native for perfor-
mance issues. Furthermore, the m-calculus describes a highly distributed representation
of orchestrations and choreographies as shown in figure] In the figure, all activities of
a choreography are shown as independent, distributed circles representing 7-calculus pro-
cesses. The processes use names to interact with each other, denoted by the lines between,
where the dotted ends represent processes with the input prefix. While the activities of
the right hand side belong inside our company, representing an orchestration, the left hand
side activities belong to some other companies. Since the activities are all distributed and
the link structure can be changed all the time, high flexibility is guaranteed. In a service
oriented architecture, all activities are actually services reachable over uniform resource
locators (URL) that can be deployed and interact as needed. The m-calculus provides a
formal abstraction layer for such systems.

Another advantage of a formal representation of service oriented architectures are the

possibilities for reasoning. Especially in the context of open environments such as the
Internet, where services are usually deployed and executed, a sound implementation is
crucial. By using bisimulation techniques of the m-calculus [San93||, orchestrations and
choreographies can be checked before deployment and matchmaking of compatible ser-
vices regarding the interaction behavior is possible. In [PWO06] we have already shown
how choreographies can be proved to be free of deadlocks and livelocks using a criterion
called Lazy Soundness. An extension of this approach can be used to prove complete
choreographies to be free of deadlocks and livelocks from the viewpoint of a certain or-
chestration. Thus, not only control flow dependencies are analyzed, but also interactions.
Finally, the correctness of service implementations can be shown by proving the inter-
action equivalence between a service specification (i.e. an abstract orchestration) and a
certain implementation.

6 Conclusion

In this paper we have shown how the 7-calculus, an algebra for mobile systems, can be
applied as a unified formal foundation for service oriented architectures. The unified for-
mal representation of all key aspects of service oriented architectures — data, processes,
and interactions — in one canonical minimal formal framework builds a foundation for
further research and development. Yet recent standards like XLang (now superseded by
BPEL4WS) [MicO1, BEAO3]] or WS-CDL [W3C04] claim to be based on the 7-calculus.
While they only took partial aspects of the m-calculus into consideration, recent research
into service interaction patterns [BDtHOS] identified the need for dynamic binding in ser-
vice oriented environments. Until now, dynamic binding has been mostly neglected in
scientific research. This paper highlighted the importance of the concepts found in the
m-calculus for service oriented architectures.

References

[BDtHO5] Alistair Barros, Marlon Dumas, and Arthur ter Hofstede. Service Interaction Patterns.
In W.M.P. van der Aalst, Boualem Benatallah, and Fabio Casati, editors, Proceedings
of the 3rd International Conference on Business Process Management, volume 3649
of LNCS, pages 302-318, Berlin, 2005. Springer-Verlag.

[BEAO3] BEA Systems, IBM, Microsoft, SAP, Siebel Systems. Business Process Execution
Language for Web Services Version 1.1 (BPEL4WS), May 2003.

[BPMO04] BPMl.org. Business Process Modeling Notation, 1.0 edition, May 2004.

[BS05] Lucas Bordeaux and Gwen Salaiin. Using Process Algebra for Web Services: Early
Results and Perspectives. In Ming-Chien Shan, Umeshwar Dayal, and Meichun Hsu,
editors, TES 2004, volume 3324 of LNCS, pages 54—68, Berlin, 2005. Springer-Verlag.

[Bur00] Steve Burbeck. The Tao of E-Business Services. Available at: http://www—128.
ibm.com/developerworks/library/ws—tao/} 2000.

http://www-128.ibm.com/developerworks/library/ws-tao/
http://www-128.ibm.com/developerworks/library/ws-tao/

[CCMSO01]

[DPWO6]

[Mar03]

[Mar05]

[Mic01]

[MPW92]

[MRSO05]

[OPWO5]

[Pet62]

[Puh06]

[PWO5]

[PWO06]

[San93]

[SBS04]

Erik Christensen, Francisco Curbera, Greg Meredith, and Weerawarana Sanjiva. Web
Service Description Language (WSDL) 1.1. IBM, Microsoft, March 2001. W3C Note.

Gero Decker, Frank Puhlmann, and Mathias Weske. Formalizing Service Interac-
tions. In S. Dustdar, J.L. Fiadeiro, and A. Sheth, editors, Proceedings of the 4th In-
ternational Conference on Business Process Management (BPM 2006), volume 4102
of LNCS, pages 414-419, Berlin, 2006. Springer Verlag.

Axel Martens. On Compatibility of Web Services. Petri Net Newsletter, 65:12-20,
2003.

Axel Martens. Analyzing Web Service based Business Processes. In Maura Cerioli,
editor, Proceedings of Intl. Conference on Fundamental Approaches to Software En-
gineering (FASE’05), volume 3442 of Lecture Notes in Computer Science. Springer-
Verlag, April 2005.

Microsoft. XLang Web Services for Business Process Design, 2001.

Robin Milner, Joachim Parrow, and David Walker. A Calculus of Mobile Processes,
Part I/I. Information and Computation, 100:1-77, September 1992.

Peter Massuthe, Wolfgang Reisig, and Karsten Schmidt. An Operating Guideline Ap-
proach to the SOA. Annals of Mathematics, Computing & Teleinformatics, 1(3):35—
43, 2005.

Hagen Overdick, Frank Puhlmann, and Mathias Weske. Towards a Formal Model
for Agile Service Discovery and Integration. In Kunal Verma, Amit Sheth, Michal
Zaremba, and Christoph Bussler, editors, Proceedings of the International Workshop
on Dynamic Web Processes (DWP 2005), IBM technical report RC23822, Amster-
dam, December 2005.

Carl Adam Petri. Kommunikation mit Automaten. PhD thesis, Institut fiir Instru-
mentelle Mathematik, Bonn, 1962.

Frank Puhlmann. Why do we actually need the Pi-Calculus for Business Process
Management? In W. Abramowicz and H. Mayr, editors, 9th International Conference
on Business Information Systems (BIS 2006), volume P-85 of LNI, pages 77-89, Bonn,
2006. Gesellschaft fiir Informatik.

Frank Puhlmann and Mathias Weske. Using the Pi-Calculus for Formalizing Work-
flow Patterns. In W.M.P. van der Aalst, Boualem Benatallah, and Fabio Casati, editors,
Proceedings of the 3rd International Conference on Business Process Management,
volume 3649 of LNCS, pages 153—-168, Berlin, 2005. Springer-Verlag.

Frank Puhlmann and Mathias Weske. Investigations on Soundness Regarding Lazy
Activities. In S. Dustdar, J.L. Fiadeiro, and A. Sheth, editors, Proceedings of the
4th International Conference on Business Process Management (BPM 2006), volume
4102 of LNCS, pages 145-160, Berlin, 2006. Springer Verlag.

Davide Sangiorgi. A Theory of Bisimulation for the Pi-Calculus. In CONCUR ’93:
Proceedings of the 4th International Conference on Concurrency Theory, pages 127—
142, Berlin, 1993. Springer-Verlag.

Gwen Salaiin, Lucas Bordeaux, and Marco Schaerf. Describing and Reasoning on
Web Services using Process Algebra. In ICWS ’04: Proceedings of the IEEE Inter-
national Conference on Web Services (ICWS’04), page 43, Washington, DC, USA,
2004. IEEE Computer Society.

[vAtHO3]

[VAtHKBOO]

[VAVHO02]
[VAWO1]

[W3C04]

W. M. P. van der Aalst and A. H. M. ter Hofstede. YAWL: Yet Another Workflow Lan-
guage (Revised version. Technical Report FIT-TR-2003-04, Queensland University
of Technology, Brisbane, 2003.

W. M. P. van der Aalst, A. H. M. ter Hofstede, B. Kiepuszewski, and A.P. Barros.
Workflow Patterns. Technical Report BETA Working Paper Series, WP 47, Eindhoven
University of Technology, 2000.

Wil van der Aalst and Kees van Hee. Workflow Management. MIT Press, 2002.

W. M. P. van der Aalst and M. Weske. The P2P Approach to Interorganizational
Workflow. In K.R. Dittrich, A. Geppert, and M.C. Norrie, editors, Proceedings
of the 13th International Conference on Advanced Information Systems Engineering
(CAiISE’01), volume 2068 of LNCS, pages 140-156, Berlin, 2001. Springer-Verlag.

W3C.org. Web Service Choreography Description Language (WS-CDL), April 2004.

	Introduction
	Motivation and Related Work
	The -calculus
	Unification
	Data
	Processes
	Interaction

	Application
	Conclusion

