
Approaching the Distributed Simulation of Related
Business Processes

by

Felix Elliger

A Thesis Submitted to the

Business Process Technology Group

in Partial Fulfillment of the Requirements for the Degree of

Master of Science

in

IT Systems Engineering

at the Hasso Plattner Institute at the University of Potsdam

November, 2011

Advisor: Prof. Dr. Mathias Weske

Abstract. Business process simulation is a powerful tool for the analysis and improve-
ment of business processes based on their models. It is, however, not sufficient to regard
a single business process as an isolated unit. Instead, a process is related to other process
by sub-process invocations or resource constraints. This thesis addresses the problem of
concurrently simulating multiple related business processes along with their resources.
Therefore, we develop a formal model of simulation scenarios and provide a mapping
onto extended timed colored Petri nets. As such scenarios may grow large, e.g. for
the simulation of a whole department or company, we consider the distribution of the
simulation as a reasonable measure for achieving a performance improvement. Thus, the
generated Petri net must be divided into partitions. Within this thesis, two algorithms
for partitioning the gathered Petri nets are proposed. Their effect on the simulation
performance is evaluated using a conservative distributed simulation engine. The ar-
chitecture of the accompanying prototypical implementation is sketched and selected
components are described in more detail. In conclusions, we infer on the potential of
distributing business process simulations.

Zusammenfassung. Geschäftsprozesssimulation ist ein mächtiges Instrument für die
Analyse und Verbesserung von Geschäftsprozessen auf Basis ihrer Modelle. Es ist je-
doch unzureichend einen einzelnen Geschäftsprozess als isolierte Einheit zu betrachten.
Vielmehr ist dieser durch Subprozess-Aufrufe und Resourcenbeschränkungen mit an-
deren Prozessen verbunden. Diese Arbeit adressiert das Problem der gleichzeitigen
Simulation mehrerer, verbundener Geschäftsprozesse und ihrer Ressourcen. Zu diesem
Zweck, entwickeln wir ein formales Modell für Simulationsszenarien und stellen eine
Abbildung auf erweiterte, zeitbehaftete, gefärbte Petri-Netze zur Verfügung. Da diese
Szenarien möglicher Weise sehr groß werden, zum Beispiel für die Simulation einer
gesamten Abteilung oder eines ganzen Unternehmens, wird die Verteilung der Simu-
lation als sinnvolle Maßnahme zur Verbesserung der Performanz betrachtet. Dazu ist es
notwendig das generierte Petri-Netz in Partitionen zu zerlegen. In dieser Arbeit werden
zwei Algorithmen zur Partitionierung der Petri-Netze beschrieben. Ihr Einfluss auf die
Performanz der Simulation wird anhand einer konservativen verteilten Simulationsein-
heit evaluiert. Die Architektur der begleitenden prototypischen Implementierung wird
skizziert und ausgewählte Komponenten im Detail beschrieben. Abschließend werden
Schlussfolgerungen zum Potential der verteilten Geschäftsprozesssimulation gezogen.

i

Acknowledgements

In first place, I would like to thank Frank Puhlmann who had the initial idea for the topic
and supported me whenever a problem occurred. Second, I appreciate the supervision by
Prof. Mathias Weske who kept asking the right questions and always had some guiding
advice. Since writing a thesis over half a year is challenging, a comfortable working
atmosphere is of highest importance. Therefore, I would like to thank all the people
at the inubit AG for making this place as enjoyable as it still is. Especially Sebastian
and Carsten, who always have a joke right at hand when I need to free my mind, have
become more than just colleagues. Besides those who made working a lot easier, I would
like to thank my parents, as all this would have never been possible without them. In
the last and, for me, most important place, I would like to thank Josy, who came into
my life at the right time. Thank you Josy, for always keeping me grounded, and staying
supportive even in times of high workload.

ii

Contents

1. Introduction 1

1.1. Questions and Requirements . 2
1.2. Contribution . 4

1.2.1. Research contribution . 5
1.2.2. Prototypical Implementation . 5

1.3. Structure of the Thesis . 6

2. Related Work And Preliminaries 9

2.1. Related Work . 9
2.2. Business Process Management . 10
2.3. Simulation in the Context of BPM . 13
2.4. Petri nets . 14
2.5. Distributed Discrete Event Simulation . 18

3. Simulation Scenarios and Their Formal Representation 23

3.1. Conceptual Architecture . 23
3.2. Simulation Modeling . 24

3.2.1. Models and Their Configuration 25
3.2.2. Formal Model for Simulation Scenarios 30

3.3. Mapping Simulation Scenarios to Petri Nets 35
3.3.1. Mapping Time . 37
3.3.2. Mapping Simulation Business Process Models 38
3.3.3. Mapping Human and Non-Human Resources 42
3.3.4. Remarks and Additional Mappings 45

4. Simulation Engine and Model Partitioning 47

4.1. A Logical Process for Conservative Distributed DES 47
4.2. Model Parallelism and Partitioning Rules 54
4.3. Bottom-Up Partitioning . 59
4.4. Top-Down Partitioning . 62

Contents iii

5. Prototypical Realization 67

6. Evaluation 73

6.1. Example Scenarios . 73
6.1.1. Example 1: TurboSoft Inc. 73
6.1.2. Example 2: Product Supply Chain 74

6.2. Statistics . 76
6.3. Result Analysis . 81

7. Summary and Outlook 83

Bibliography 85

A. TurboSoft Inc. Processes 91

1

1. Introduction

Imagine you were the manager of a manufacturing company. Your simple goal is to
increase the winnings of your company. Therefore, you want to create highest quality
products at their lowest possible production costs. Further, you want to produce suffi-
cient items to fulfill every order as fast as possible. However, as the number of orders
is rapidly increasing, you are close to losing potential customers due to a bottleneck in
your production process.

What could you do to overcome this bottleneck? Employ more workers? Buy more
machines? Change the production process? On the one hand, there exists a variety
of opportunities. On the other hand, it would be way too risky and too expensive to
test each of these opportunities in your real company. Therefore, you need to decide for
efficient measures. Finding these measures is a difficult and responsible task. However,
if you can not test the opportunities in the real company, it would be helpful to try them
out fictively.

A suitable tool for this kind of problem, is business process simulation. As stated by
White and Ingalls in [65], “Simulation is a particular approach to studying models, which
is fundamentally experiential or experimental’. Applying this statement to our example,
your company is the model under study. Using modeling notations like organizational
charts and the Business Process Model and Notation (BPMN) [22], it is possible to de-
scribe a company’s structure and processes by models, which can be used as inputs for
a business process simulation engine. Further, models provide means for virtually em-
ploying more or less workers and machines, or changing the processes, without affecting
the day-to-day business.

Since a process cannot, in general, be regarded as an isolated unit, it is not sufficient
to simulate only one process at a time. Instead, a process might invoke other processes
or is competing for the use of a specific resource with other processes. Therefore, the
related processes need to get simulated at the same time. Regarding our example, this
implies, if you want to improve a certain step in your production, you need to consider
all processes that are related to the production to derive appropriate measures.

2 CHAPTER 1. INTRODUCTION

However, simulating a whole department or even a complete company is a challenging
task. First, a user has to be enabled to model such scenarios, consisting of processes,
human resources and non-human resources. The models have to describe, e.g., the
number of created instances, execution times of tasks, and working times of employees.
Second, a formalism must be available that is able to express the concepts described by
the models and is, at the same time, suitable for simulation. Third, a mapping must
exist, that maps the models, their properties, and their dependencies onto the formalism.
Fourth, there has to be a simulation engine that runs the simulation in an appropriate
time, although handling thousands of process instances, and delivers meaningful results
to the user.

This thesis describes an approach for handling the simulation of multiple related pro-
cesses under consideration of their required human and non-human resources. We de-
velop a formal model for such simulation scenarios and provide a mapping onto the
formalism of timed colored Petri nets. Further, we describe a simulation engine that is
capable of distributing the simulation of the generated net among a set of simulation
engines. We assume the distribution to be a reasonable step in order to gain perfor-
mance compared to the classic simulation running on a single engine. This gain has
already been documented by Ferscha for single process simulations in [17], where they
observed a 200 to 250 fold gain over the single-threaded execution. Using a prototypical
implementation of our approach, an evaluation using realistic examples is conducted and
conclusions are drawn.

The remainder of this chapter is structured as follows. Section 1.1 states requirements
imposed on an appropriate solution to the described problem. Based thereon, section
1.2 presents a detailed outline on the research contribution of this thesis. Concluding
this chapter, section 1.3 outlines the structure of this thesis.

1.1. Questions and Requirements

When approaching the concurrent simulation of multiple related processes, the level of
supported constructs and concepts can be almost arbitrarily chosen. This section defines
the scope of our approach. The listed requirements serve as a basis for the investigations
described in the next chapters. We partitioned them into modeling, functional, and
technical requirements.

1.1. QUESTIONS AND REQUIREMENTS 3

Modeling Requirements Since simulation is only an approximation of the real world
behavior, we must provide sufficient means for defining reasonable simulation models.

MR1: Resource Modeling There must exist a graphical language for specifying organi-
zational structures, composed by units, roles, and persons. Further, a mechanism
for determining inventories must be provided.

MR2: Process Modeling Since processes are the core element of our simulation, a
graphical, and thereby user-friendly, process modeling language must be avail-
able. The language has to provide constructs for expressing the following workflow
patterns as described by Russel et al. in [46]: Sequence, Parallel Split, Synchro-
nization, Exclusive Choice, Simple Merge, Structured Loop, Cancel Activity, and
Deferred Choice. Processes can be linked to other processes, i.e. representing a
sub-process relation or a message exchange. In addition, the tasks of the processes
can be connected to human and non-human resources, specifying their resource
relations.

MR3: Time Modeling The purpose of basically every kind of simulation is to reveal the
evolution of a system over time. Therefore, means for modeling times and time
constraints must exist. For human resources, working times have to be specifiable
determining their availability for work. For tasks, the duration of a single execution
is relevant. Please note: These execution times might be affected by several factors,
and are not a priori constant. Further, the number and frequency of created process
instances might vary over time, e.g. there are less instances over night than at
daytime. Therefore, the user must be enabled for the specification of such facts.
The specification of times must be available in a comprehensible format.

MR4: Probability Modeling Decisions made by humans or based on process data are
usually hard, or even impossible, to be simulated. To overcome this obstacle,
probabilities need to be configurable for the respective decision points.

MR5: Scenario Modeling To determine the extent of a single simulation run, a way
for grouping process models, organizational charts, and inventory lists together to
form a simulation scenario must be provided. Further, the start and end point of
simulated time in terms of concrete dates has to be specified.

Functional Requirements For executing a simulation consisting of multiple related
processes and resources, the following functional requirements must be fulfilled.

FR1: Model Formalism A formalism must be found, that is powerful enough, though

4 CHAPTER 1. INTRODUCTION

still appropriate for automatic simulation, to represent the modeled concepts, en-
tities, and relations.

FR2: Mapping Function For translating the original simulation models into models of
the formalism, a mapping must be provided.

FR3: Simulation Engine The formal description of the simulation scenarios form the
basis for the simulation. Therefore, a simulation engine is required that knows the
execution semantics of the formalism.

FR4: Reporting After a successful execution of a simulation run, the results of the
simulation must be delivered to the user. This report contains, among other issues,
the number of created process instances for each process.

Technical Requirements As mentioned in the introduction, we assume the distribution
of the simulation among a set of computational resources to be a reasonable step for
improving the performance of the simulation. However, distribution imposes technical
requirements to be considered.

TR1: Model Partitioning The different computational nodes, each of them running a
simulation engine as claimed by FR3, must be assigned to handle a specific part of
the simulation model. Therefore, the model must be reasonably partitioned, such
that the model parallelism is exploited to the best possible extent.

TR2: Synchronization The concurrently running engines must synchronize their exe-
cution, in order to deliver the same causally correct results as the single-engine
approach would do.

TR3: Communication For synchronization purposes the engines must be enabled to
communicate with other engines if this is necessary.

1.2. Contribution

This section describes the contribution of the thesis and the corresponding prototypical
implementation. Section 1.2.1 outlines the contribution to research. In Section 1.2.2, we
describe the functional extent of the prototype which has been built in context of this
work.

1.2. CONTRIBUTION 5

1.2.1. Research contribution

As outlined in the motivation for this thesis, the main goal is the development of an
approach for enabling an efficient simulation of multiple related business processes and
their participating resources. It is, however, not sufficient to put an exclusive focus on
the simulation itself, but to investigate the fields of business process modeling, simulation
modeling, and model formalisms in general. Therefore, the contribution of the thesis
comprises as follows:

Literature Analysis The fields of business process simulation and distributed simulation
in general are not new to research, but have been investigated for quiet a long time.
This creates a broad grounding for this work. Therefore, we analyze and summarize
the current state of research especially in these two areas.

Formal Model of Simulation Scenarios Based on our observations made in the exist-
ing literature, we specify formal descriptions of processes, resources and finally
simulation scenarios.

Mapping Onto Petri Nets We describe a mapping of the supported modeling concepts
onto the formalism of timed colored Petri nets. Further, we state reasons for
choosing Petri nets as a formalism.

Partitioning Algorithms Taking the Petri net representation and the findings from lit-
erature as a starting point, we describe concrete algorithms for partitioning the
generated net.

Algorithm Evaluation The described algorithms are evaluated using two realistic simu-
lation examples. The results will be compared to those of the single-engine simu-
lation and conclusions are drawn.

1.2.2. Prototypical Implementation

Driven by the research contribution of the thesis, the implemented prototype provides
the following features.

Simulation modeling Via web-based graphical interfaces, the user is enabled to model
processes and organizational structures, specify simulation parameters, and com-
pose simulation scenarios of multiple models.

Petri net mapping The specified simulation scenarios are automatically mapped onto

6 CHAPTER 1. INTRODUCTION

timed colored Petri nets, which provide the required formalism for the specification
of our algorithms.

Simulation Engine The prototype implements a simulation engine for the discrete simu-
lation of the generated Petri nets. For our prototype, we consider the distribution
of the simulation among multiple CPU cores of a single machine. However, a
physical distribution onto multiple machines should be attainable by minor im-
plementation efforts. For excluding implementation issues as a source of error
during evaluation, we use the same engine for both, the single-threaded and the
distributed simulation.

Partitioning algorithms The prototype implements two partitioning strategies for dis-
tributing the generated Petri net.

Evaluation framework For analyzing the performance of the different partitioning algo-
rithms, there is a simple framework for evaluating the simulation runs in terms of
their execution time.

Visualization of simulation results Although this work is focused on the investigations
with respect to the distribution strategies of the simulation, the prototype provides
a simple visualization of the gathered simulation results. This visualization enables
the user to see, e.g., the number of generated process instances, instance execution
times, and, furthermore, provides a simple mechanism for pointing the user to
problematic points in the simulated processes.

1.3. Structure of the Thesis

The remainder of this thesis is structured as follows. Chapter 2 describes preliminaries for
this thesis. Related work is discussed, an introduction to business process management
and simulation is given, and Petri nets are defined. Concluding this chapter, we concisely
describe discrete event simulation and its distribution. In chapter 3, the first part of our
contribution is presented. After a sketch of the abstract system architecture, the formal
model for simulation scenarios is presented. The chapter is completed by the mapping of
simulation scenarios onto timed colored Petri nets. Subsequently, chapter 4 commences
by describing the simulation engine that enables distribution. This chapter further
investigates the basics for model partitioning and presents two concrete algorithms for
partitioning timed colored Petri nets. In chapter 5, we provide insights on some vital
components of our accompanying prototypical implementation. Using this prototype

1.3. STRUCTURE OF THE THESIS 7

and the algorithms developed in chapter 4, evaluation results for two realistic use cases
are shown in chapter 6 and conclusions are drawn. Conclusively, chapter 7 summarizes
this thesis and gives an outlook on future work.

8 CHAPTER 1. INTRODUCTION

9

2. Related Work And Preliminaries

Within this chapter, we thoroughly describe the functional and technical grounding for
this thesis. Section 2.1 gives a concise overview on related work. In section 2.3 we
integrate the technique of simulation into the discipline of business process management
described in section 2.2. Section 2.4 introduces the concept of Petri nets along with its
extensions of timed and colored Petri nets. Concluding this chapter, section 2.5 gives a
general introduction to discrete event simulation and its distribution.

2.1. Related Work

Simulation is a well-established technique applied in versatile contexts. Using simulation
for the analysis of business processes has already been documented in the 1970s by
Shannon in [48]. Concise introductions are given, e.g., by Shannon in [49] and White
and Ingalls in [65]. Recently, a list of problems of business process simulation approaches
has been published by van der Aalst in [57]. Among other issues, the oversimplification
of simulation models is remarked which includes the pure focus on single processes.
This result is supported by a tool survey conducted of Jansen-Vullers and Netjes ([30]).
Besides business process simulation tools, the survey analyzed some general purpose
simulation tools, which might be configured for multi-process simulation. However, these
tools are based on proper modeling languages resulting in high effort for translating the
original models to models of the tool.

Using business process simulation as a powerful tool for business process re-engineering
has been documented, e.g., by Tumay ([52]) and Hlupic and Robinson ([24]). In addi-
tion these papers argue that discrete event simulation (DES) is the most suitable and
powerful simulation technique for business processes. A conceptual introduction to DES
is given by Schriber and Brunner in [47]. The distribution of simulation is thoroughly
described by Fujimoto in [19]. Prominent works on simulation engines for distributed
discrete event simulation have been published by Misra ([34]), Chandy ([7]), and Jeffer-

10 CHAPTER 2. RELATED WORK AND PRELIMINARIES

son ([25]). Overviews on synchronization strategies have been published by Ferscha in
[16] and Zarei in [66].

The suitability of Petri nets as a formalism for business processes has been thoroughly
investigated by van der Aalst ([55]). Dijkman et al. ([13]) provide a mapping of BPMN
constructs to Petri nets covering only the structure of the process model. The mapping
is enriched by considering simulation parameters in [29]. However, this mapping of
Krumnow et al. does not cover all modeling constructs used in this thesis. Another
well-documented formalism is the π-calculus, originally proposed by Milner et al. in [33].
Its suitability is shown by Puhlmann in [42] who further presents a mapping of workflow
patterns to the calculus in [43].

For both formalisms an approach for applying the DES technique is available. Wang
and Wysk ([62]) give the approach for the π-calculus. In [9], Chiola and Ferscha already
describe the distributed discrete event simulation of timed Petri nets. These are, how-
ever, generic approaches to DES and are only shown in a superficial, i.e. non-algorithmic,
manner for only very small examples. It lacks a bridge between business processes and
an effective automated partitioning for their distributed simulation. In general, this par-
titioning is independent of the chosen formalism. A first approach for distributing the
execution of business process models is shown in [15]. However, the proposed process
models are low-level Petri nets, whereas this thesis considers high-level modeling lan-
guages. Another side-effect of using low-level Petri nets is the inability of distinguishing
between process instances which is necessary for a meaningful reporting of simulation
results. An exhaustive list of reporting issues is given by Anupindi et al. in [3].

The modeling of resources and their assignment to tasks is a vital part of our approach.
Zur Mühlen ([35]) gives an overview on this topic. The necessity of considering human
resources for simulation is discussed by Baines et al. in [5]. Graphical meta-models for
resources and patterns for their assignment to process activities are presented by Russel
et al. in [45]. There is, however, no formalization of the depicted meta-models. Further,
an approach for capturing human work behavior is proposed by van der Aalst et al. in
[60].

2.2. Business Process Management

The discipline of business process management (BPM) is defined by van der Aalst et
al.([58]) as follows.

2.2. BUSINESS PROCESS MANAGEMENT 11

Definition 1 (Business Process Management (BPM)) “Supporting business pro-
cesses using methods, techniques, and software to design, enact, control, and analyze op-
erational processes involving humans, organizations, applications, documents and other
sources of information.”

A basic concept of BPM “is the explicit representation of business processes with their
activities and the execution constraints between them.” ([64]) This leads to the definition
of a business process.
Definition 2 (Business Process (cf. [64])) A business process consists of a set of
activities, jointly realizing a business goal, that are performed in coordination in an
organizational and technical environment.

Business processes are subject to analysis, change, and implementation. The life-cycle of
a business process is captured in figure 2.1, depicting an iterative process of four phases
that represent the relevant concepts in BPM.

Evaluation:
Process Mining

Business Activity Monitoring

Configuration:
System Selection
Implementation

Test and Deployment

Operation
Monitioring

Maintenance

Enactment:
Business Process
Identification and

Modeling

Validation
Simulation
Verification

Design:

Analysis:

Figure 2.1.: Business Process Life-cycle (cf. [64])

In its first iteration, the life-cycle starts in the Design and Analysis phase. This phase
targets the identification of processes and organizational structures along with their
explicit representation using process models. Usually, graphical modeling languages,
e.g. YAWL ([54]), event-driven process chains ([27]), BPMN ([22]), or UML activity
diagrams ([21]), are used to achieve process models. We will have a closer look at the
Business Process Model and Notation (BPMN) later in this section. Another part of
this first phase is the analysis of the identified processes. Analytical tasks assure the
quality and correctness of the identified processes and can be used to improve them.

12 CHAPTER 2. RELATED WORK AND PRELIMINARIES

After its design, the Configuration phase identifies possible realizations of the process.
The concrete implementation of a process differs according to its degree of automation
or computer support. Until this point in the life-cycle we used an artifact, namely the
process model, that serves as a kind of blueprint for all instances of this process.
Definition 3 (Business process instance (cf. [64])) A business process instance is
a concrete case in the operational business of a company following the rules depicted by
its corresponding business process.

Once the process is implemented and configured, it is ready for execution (Enactment
phase), i.e. process instances are created. During execution, monitoring components
collect information on the running process instances. The gathered information can be
used in the Evaluation phase for further process improvement and the determination of
key performance indicators ([40]).

As already mentioned above, there exists a variety of business process modeling lan-
guages. A prominent example is the Business Process Model and Notation(BPMN).
BPMN is a graphical, graph-based language, supporting the representation of various
control flow constructs. Besides the modeling of tasks and their control flow dependen-
cies, BPMN supplies a simple mechanism for referring to organizational resources and
artifacts, like process data. A sample BPMN process model is depicted in figure 2.2.

Pr
od

uc
er

Create
Product

Prepare
Invoice

Ship
Product

En
gi

ne
er

C
on

tro
lle

r

Received
Order

Invoice

Figure 2.2.: A BPMN process example

The sketched process is instantiated on the reception of an order, i.e. the occurrence of
an event. Concurrently, an engineer produces the requested item and a controller creates
an invoice. The simultaneity of the tasks is indicated by the diamond incorporating a
plus-symbol. If both persons have completed their tasks the product is shipped and the
process instance terminates. The box around the actual process, called Pool, describes
its organizational context. By placing tasks into different Lanes of the pool, the re-
sponsibilities for the task execution are defined. We further observe a data dependency
between Prepare Invoice and Ship Product.

2.3. SIMULATION IN THE CONTEXT OF BPM 13

Since its version 2.0, each BPMN element has clearly defined execution semantics, which
enables an unambiguous execution and simulation of processes specified as BPMN pro-
cess models.

2.3. Simulation in the Context of BPM

As stated by White and Ingalls in [65], “Simulation is a particular approach to studying
models, which is fundamentally experiential or experimental”. Models are appropriate
abstractions of real world facts, created for a specific purpose, e.g. the understanding of
complex issues.

As we can see from figure 2.1 in the previous section, business process simulation (BPS) is
a vital part of the business process life-cycle. As such, it is concerned with the validation
and improvement of business processes and can be used effectively for re-engineering
already existing processes ([52]).

Simulation is a rather practical approach to the evaluation of models. A simulation
engine is used to test the models in a virtual environment. For business processes,
this environment usually consists of entities representing humans or machines that are
required to conduct the process. Due to this virtual execution of processes it is possible to
arbitrarily change the processes and their environment without affecting the day-to-day
business. This makes BPS a primary tool for what-if-analyses.

In general, the simulation engine embodies a notion of time, which is advanced during
simulation. The progression of time can be either continuous or discrete. A famous
simulation approach applying a continuous notion of time are System Dynamics ([44]).
In a process model, however, discrete points in time can be identified where the state
of a process instance changes, e.g., by the begin or completion of a task. Therefore,
discrete event simulation(DES) is a well-suited approach to BPS. Detailed information
on DES is presented in section 2.5.

In contrast to simulation, analytical approaches try to capture the behavior of a sys-
tem or process using mathematical equations. Resolving these equations leads to the
requested results. A prominent example of such techniques in the context of business
processes analysis is shown by Magnani and Montesi in [31]. Creating and resolving such
mathematical equations is an elaborate task, which is usually unaffordable for complex
systems.

14 CHAPTER 2. RELATED WORK AND PRELIMINARIES

Generally speaking, although analytical techniques deserve their existence and return
accurate results, simulation is a fair approach for running experiments on business pro-
cesses while still providing meaningful results.

2.4. Petri nets

This section recalls the basic definitions of Petri nets and its extensions of Timed and
Colored Petri nets. The original concept has been introduced by Petri ([41]) in 1962
and has, since then, been applied in several contexts and extended by further concepts,
e.g. time. A comprehensive introduction to basic Petri nets, their properties, and
applications is presented by Murata in [36].
Definition 4 (Petri net) A Petri net, or simply a net, is a tuple N = (P, T, F) with
P and T as finite disjoint sets of places and transitions, and F ⊆ (P × T) ∪ (T × P) as
the flow relation.

Places are graphically represented as circles, transitions as rectangles, and the flow rela-
tion as directed edges between them, composing a bipartite graph. For a node n ∈ P ∪T
of net N we define the set of inputs, also called preset, as •[N]n = {x|(x, n) ∈ F}, and the
set of outputs, also called postset, as n•[N] = {x|(n, x) ∈ F}. For notational simplicity,
we will use •n and n• if it is unambiguous to which net we are referring.
Definition 5 (Labeled net) A labeled net is a tuple N = (P, T, F, T , λ), where

• (P, T, F) is a Petri net,
• T is set of labels, with τ ∈ T , and
• λ : T → T is a function assigning labels to transitions.

If λ(t) = τ , t is a τ -transition; otherwise, t is observable.

The state of a net is represented by a function M : P → N, assigning a number of
tokens to each place. M is called a marking of the net. A transition t ∈ T is enabled
in a marking M , if, and only if, ∀p ∈ • : tM(p) ≥ 1. An enabled transition can
be fired. The firing of a transition t removes a token from each place pin ∈ •t and
produces a token for each place pout ∈ t•, thereby, creating a new marking M ′. We
denote this fact by writing M [t〉M ′. Assuming an initial marking Mi, a marking Mn is
reachable if there are transition t0, t1, . . . , tj and markings M0,M1, . . . ,Mn−1, such that
Mi[t0〉M0[t1〉M1[t2〉 . . .Mn−1[tj〉Mn. The sequence t0, t1, . . . tj is called a firing sequence.
Two transitions t1 and t2 are mutually exclusive if there is no reachable marking M ,
such that t1 and t2 are both enabled in M . Two transitions t1 and t2 are in a structural

2.4. PETRI NETS 15

conflict, if they share an input place, i.e. •t1 ∩ •t2 6= ∅.

For these low-level Petri nets, the tokens are indistinguishable, i.e. it is impossible to
distinguish different process instances in such a net. For such reasons, there exist several
types of higher-level Petri nets.

As stated by Jensen in [26], Colored Petri nets “allow the modeller to make much
more succinct and manageable descriptions than can be produced by means of low-level
nets.” The coloring of tokens allows for specifying process data, manipulate this data
and impose further conditions on the control flow. Thereby, Colored Petri nets (CPN)
provide sufficient means for representing multiple distinct process instances within a
single net.
Definition 6 (Multi-Set(cf. [26])) A multi-set m, over a non-empty set S, is a func-
tion m : S → N, where the non-negative integer m(s) ∈ N is the number of appearances
of s in the multi-set m. We write s ∈ m if m(s) ≥ 1.
Definition 7 (Labeled Colored Petri net(cf. [64], [26])) A Labeled Colored Petri
net(CPN) is a tuple CPN = (P, T, F, T , λ,Σ, γ, µ, ε), where

• (P, T, F, T , λ) is a labeled net,
• Σ, is a finite set of types, called color sets, which are also finite and non-empty,
• γ, is a color function γ : P → Σ, that associates each place with a color set,
• µ, is a guard function µ : T → BooleanExpr that maps each transition to a

predicate, and
• ε, is an arc expression function ε : F → Expr, assigning an expression to each

arc that evaluates to a multi-set over the color set of the place connected by the
respective arc.

Associating the variables of the arc expressions to color values of tokens is called a
binding. The available color values and their frequency are determined by function ε.
Of course, these bindings along with the guard expression defined by µ, influence the
enabling and firing of transitions. Further the definition of a marking of the net is
influenced by the token colors. We will give an example later. For the formal definitions
of the enabling of transitions and markings in a CPN, we refer the reader to [26]. We
denote the multi-set of enabling bindings for transition t by EB(t).

Although CPNs are a powerful modeling language, they do not, by definition, explicitly
provide means for specifying the time consumption of transitions. Therefore, definition
7 must be further extended. The most general type of timed Petri nets are Stochastic
Petri nets, as described, e.g., by Marsan in [32], which allow random firing delays for

16 CHAPTER 2. RELATED WORK AND PRELIMINARIES

transitions. Furthermore, van der Aalst ([53]) presents a combination of timed and
colored Petri nets.
Definition 8 (Labeled Timed Colored Petri net) A Labled Timed Colored Petri
net(TCPN) is a tuple TCPN = (P, T, F, T , λ,Σ, γ, µ, ε, TS,D, δ), where

• (P, T, F, T , λ,Σ, γ, µ, ε) is a labeled colored Petri net,
• TS is the time set,
• D is the set of distribution functions, where d ∈ D is defined as d : [0, 1]×TS → TS

• δ is a function δ : T → 2TS×TS×D that associates a transition with one or multiple
distribution functions.

Let us have a closer look into the definitions of TS,D, and δ. TS defines an arbitrary
set of time stamps, where ∀x, y ∈ TS : x + y ∈ TS. We will, however, assume that
TS ⊆ N ∪ {0,∞} representing an arbitrary time unit. A function d ∈ D takes a time
stamp t1 ∈ TS and a random value v ∈ [0, 1] as inputs, and returns a time t2 ∈ TS, with
t1 + t2 ≥ t1. As these functions are assigned to transitions by function δ, they provide
firing delays, where t1 + t2 defines the point in time when the transition completes firing.
t2 is the firing delay. In general, we denote the firing delay of a transition t with fd(t).

By the definition of δ we are able to associate a transition with multiple of such distribu-
tion functions. Therefore, for a transition t ∈ T , δ(t) is a subset of TS × TS ×D, where
a tuple (t1, t2, d) denotes that within the time interval [t1, t2] function d is applied to
determine fd(t). This notion implies that the time intervals in δ(t) are non-interleaving,
i.e. for a concrete point in time there is at most one distribution function to be applied.
For all τ -transitions tτ ∈ T , δ(tτ) = {(0,∞, d : [0, 1]× TS 7→ 0)}, i.e. τ -transitions have
no delay.

In addition to the enabling constraints imposed for CPNs, we define that a transition
t ∈ T of a timed colored Petri net, is only enabled in a marking M at a point in time
t0 ∈ TS, if ∃(t1, t2, d) ∈ δ(t) : t1 ≤ t0 ≤ t2; otherwise, t is not enabled.

As an illustrative example for the concepts defined before, Figure 2.3a depicts a simple
timed colored Petri net. It represents a simple join of two branches followed by a task
execution. For a better explanation, we have also labeled the places (p1 to p4,h).

The underlined letters below each place indicate its type, i.e., p1 to p4 have the same
type, whereas h is of another type. Consequently, the tokens consist of different types
and structure. Type P refers to a color representing process IDs; type HR refers to a
color representing human resources with their name and role. The respective tokens are
represented as tuples in round brackets next to the places. Arc expressions are defined

2.4. PETRI NETS 17

P

HR

p1

p
2

p
3

p
4

h

(a1)
(b2)

(a1)

(John, Mechanic)

<p>

<p>

<p> <p> <p>

<n,r> <n,r>

[r=Mechanic]

δ(Join) = {(0,∞, d(t,v) ↦ 0)}
δ(Task) = {(0,∞, d(t,v) ↦10)}

(c3)

Join Task

P

P P

(a) A Timed Colored Petri net (b) An Extended TCPN

Figure 2.3.: Petri net examples

in arrow brackets close to each edge. Evaluating the arc expression < p > for place
p1 returns the (multi-)set {a1, b2}; for place p1 it returns {a1}. For a valid enabling
of a transition, a variable can only be bound to one value, i.e. transition Join is only
enabled for the binding < p = a1 > and not for < p = b2 >. The firing of Join puts a
token (a1) to place p3, that already contains a token (c3). Having these two tokens at
place p3, transition Task is enabled twice, i.e. EB(Task) = {< p = a1, n = John, r =
Mechanic >, < p = b2, n = John, r = Mechanic >}.

For transition Task we specify a guard condition, denoted by square brackets, which
requires the role of the human resource token to equal “Mechanic”. From the definition
of δ, we see that Join is not time consuming whereas Task has a constant firing delay
of ten time units.

In literature, there exist multiple approaches for defining a transition firing in a timed
Petri net. Most approaches consider an atomic firing of transitions, i.e., if the transition
fires, tokens are removed and produced in one immediate step. The approach of Jensen
([26]) associates a time stamp with each token indicating when this token is “ready to
use”. If a transition t fires, i.e. available tokens are consumed at a point in time t1,
new tokens are immediately created, having a time stamp t1 + fd(t). In [18], Ferscha
requires a transition t to be enabled for the time fd(t), before the firing takes place.
Other approaches, as described by Zuberek in [67], assume the firing to consist of two
steps, i.e., the tokens are removed from the input places of t, remain “inside” t for the
time fd(t), and are finally put into the output places.
Definition 9 (Extended Timed Colored Petri net) An Extended Timed Colored
Petri net(ETCPN) is a tuple ETCPN = (P, T, F,Esc, T , λ,Σ, γ, µ, ε, TS,D, δ), where

• (P, T, F, T , λ,Σ, γ, µ, ε, TS,D, δ) is a labeled timed colored petri net, and

18 CHAPTER 2. RELATED WORK AND PRELIMINARIES

• Esc ⊆ P × T,Esc ∩ F = ∅ is a set of escape arcs.

Escape arcs enable the inhibition of transitions. A place p is an escape place of transition
t, if there exists an escape arc (p, t) ∈ Esc. Escape arcs are visually represented by edges
ending with a circle. Combining the concepts of escape arcs and colored tokens a complex
transition firing mechanism is created.

As an illustration, figure 2.3b depicts a small ETCPN. Place p3 is an output of transition
Ev and at the same time an escape place for transition Task. For the three process
instances, a1, b2, and c3, the following scenarios apply:

Race condition For process instance a1, both transitions are concurrently enabled.
Transition Ev has a firing delay between 1 and 10 time units; Task has a con-
stant firing delay of 5 time units. Depending on the concrete firing delay of Ev,
Task fires successfully or gets preempted.

Inhibition For process instance b2 place p3 already contains a token. Thereby, transition
Task will not even start firing for this instance. We say Task is inhibited for process
instance b2.

Preemption We assume that transition Task has already started firing for process in-
stance c3, applying the two-step firing approach ([67]). In this case, the arrival of
a token with the same instance ID at place p3 leads to the immediate cancellation
of the transition firing, i.e., no token will be produced for place p4. For approaches
considering atomic transition firings, preemption and inhibition are conceptually
equal.

2.5. Distributed Discrete Event Simulation

In discrete event simulation (DES) the change of a system’s state over time is represented
as a sequence of events. Each event occurs at a discrete point in time. Between the
occurrence times of two consecutive events the state of the simulated system does not
change. Therefore, the simulation time is not continuously advanced by a constant step
size, but to the closest point in future where the next event will occur. If multiple events
are scheduled at the same point in time, they are sequentially executed. The sequential
order is determined by random or by applying a prioritization scheme.

Since an event represents a change in the system’s state, the occurrence of an event
usually leads to the scheduling of new future events. For example, when simulating a

2.5. DISTRIBUTED DISCRETE EVENT SIMULATION 19

simple web server, an event representing an incoming request will eventually lead to an
event representing the sending of the respective response. In addition, the firing of an
event may invalidate other, already scheduled, events, e.g. if two events require exclusive
access to a shared resource.

From the implementation point of view, a simulation engine following the DES paradigm
provides the following data structures:

Clock For tracking the simulated time a clock is required. The clock c is advanced in
discrete, usually unequal, steps using the function advance(c, t), where t is a time
stamp.

Event An event describes the change of the system’s state at a specific point in simulated
time. Therefore, an event ev specifies an action, denoted by action(ev), and a time
stamp, denoted by time(ev). Furthermore, a function isValid(ev) can be used do
determine if a respective event is still valid with respect to the current state.

Event List The event list is a sorted list of events similar to a priority queue. The pri-
mary metric for sorting the events is their time stamp. For events with equal time
stamp further metrics might be applied; otherwise they are randomly enqueued.
For an event list evl and an event ev the following operations are defined:

• schedule(evl, ev), inserts the event into the event list.
• dequeue(evl), removes and returns the first event in the event list, i.e. the

event with the nearest time stamp.
• deschedule(evl, ev), removes the event from the event list. This function is

used if an event got invalidated.
• isEmpty(evl), checks if the list is empty.

Using these data structures, the basic algorithm for discrete event simulation is sketched
in algorithm 1.

Although DES is a powerful approach, large simulation models generating a vast amount
of events require much computational resources and a probably unaffordable amount of
real world time for their simulation. To overcome these obstacles, a lot of investigations
have been conducted in the field of parallel and distributed discrete event simulation.
As explained by Ferscha ([16]), the term parallel refers to a multi-processor approach
where synchronization is achieved by the use of shared memory. In contrast, the term dis-
tributed refers to a multi-processor approach where synchronization is manually achieved
using a synchronization protocol. With respect to this classification, this thesis is con-

20 CHAPTER 2. RELATED WORK AND PRELIMINARIES

Algorithm 1: Basic DES algorithm
Prerequisites: evl is an empty event list; clock is a clock; endTime is the time until

the system is simulated

scheduleInitialEvents (evl) ;
while ¬ isEmpty (evl) ∧ clock < endTime do

ev ←− dequeue (evl) ;
advance (clock, time (ev)) ;
perform action (ev) ;
scheduleNewEvents (evl) ;
descheduleDevalidatedEvents (evl) ;

end

cerned with distributed discrete event simulation(DDES), as it is the more general case
also allowing the physically distributed execution on multiple machines. We will, how-
ever, use both terms interchangeably with the meaning of distributed simulation.

In order to get simulated in a distributed manner, the simulation model must be parti-
tioned. The partitions are simulated by so-called logical processes(LP) that are commu-
nicating using messages. A reasonable partitioning of the simulation model exploits its
parallelism as good as possible, i.e. if two parts of the simulation model are completely
independent of each other, they should be placed in different logical processes. Moreover,
the partitioning is influenced by the chosen synchronization protocol.

The purpose of a synchronization protocol is to ensure the semantical and chronological
order of the simulated events, thereby ensuring the correctness of the distributed simu-
lation result. A compact overview on existing protocols is given by Zarei in [66]; a more
explanatory summary can be found in [16]. Over time, four basic categories of strategies
have evolved.

Conservative Protocols The philosophy behind conservative synchronization strategies
is to ensure that after simulating an event it is not possible to receive a message, i.e.
from another logical process, having a smaller time stamp. This chronological order is
preserved by blocking the execution of a logical process until it is safe to process the
next event. The original approaches have been described by Bryant, Chandy, and Misra
([6, 7]). Conservative protocols are straight-forward in their implementation. Their
drawback, however, is they are too pessimistic and, thereby, obstruct the full exploitation

2.5. DISTRIBUTED DISCRETE EVENT SIMULATION 21

of model parallelism. In addition, if there are circular dependencies between the logical
processes, the simulation might deadlock when multiple processes are waiting on each
other. For the latter problem, distributed deadlock detection and recovery (cf. e.g. [8])
and deadlock avoidance (cf. e.g. [34, 38]) algorithms have been proposed.

Optimistic Protocols In contrast to the conservative approaches, in optimistic proto-
cols, the logical processes continue simulating despite the probability of the occurrence
of a message with a time stamp “in the past”. If such a message occurs, the simulation
is rolled back to the point in time this, so-called, straggler message occurred. These
rollbacks require the simulation engines to persist past states of the system in order to
restore them if necessary. Therefore, although optimistic approaches allow for a better
exploitation of model parallelism, they are much more resource consuming than conser-
vative approaches, and, in case of rollbacks across multiple logical processes, generate
an additional communication overhead. The original approach for these protocols has
been presented by Jefferson in [25].

Hybrid Protocols To avoid tremendous rollback cascades while still reducing the block-
ing times of logical processes, hybrid protocols, incorporating conservative and optimistic
aspects, have been developed. Examples are proposed, e.g., by Steinman ([50]) and Dick-
ens ([12]).

Adaptive Protocols As an optimization of the general hybrid approaches, adaptive
protocols try to adapt the level of optimism while the simulation is running. An example
for this class has been published by Ferscha and Chiola in [15].

The distributed simulation of Petri nets and their extension of timed Petri nets has been
thoroughly investigated by Chiola and Ferscha in [9] and [10]. A logical process for such
simulation consists of three parts: a spatial region of the Petri net, a simulation engine
implementing the synchronization protocol, and a communication interface for sending
messages to and receiving them from other LPs. The communication interfaces can be
connected using directed communication channels for exchanging messages.

22 CHAPTER 2. RELATED WORK AND PRELIMINARIES

23

3. Simulation Scenarios and Their Formal

Representation

The current and the following chapter describe our approach to the concurrent simulation
of multiple related processes. After a short outline on the conceptual architecture in
section 3.1, section 3.2 defines our notion of simulation scenarios. Based thereon, we
present a mapping of simulation scenarios onto timed colored Petri nets in section 3.3.

As mentioned in section 2.1, Petri nets are not the only formalism at hand, that can be
used for the formal representation of business processes. However, Petri nets have been
proven to be a well-suited and well-understood formalism for the analysis and simulation
of business processes ([56]). Further, from a conceptual point of view, the partitioning
of the simulation model, for its distributed execution, is independent of the concrete
formalism. Therefore, and due to previous experiences using them, we chose Petri nets
as the formalism for our approach.

3.1. Conceptual Architecture

In [29], Krumnow proposes an architecture blueprint for a business process simulation
engine. Although, the general structure also applies for our approach, we need to refine
this architecture for the following reasons.

First, disregarding the fact that the blueprint is tailored towards the use of BPMN
as a modeling language, process models are the only considered model type. This is
not sufficient in our case. Besides considering organizational models, the simulation
scenario is a model itself. Second, the blueprint represents a solution for a single-engine
simulation. As we seek the distribution of simulation among multiple simulation engines,
we have to introduce a component that partitions the generated Petri net. Third, since
there will be multiple engines, we need a component for initiating the simulation and
collecting the results for the user. Considering these adaptions, we receive the conceptual

24
CHAPTER 3. SIMULATION SCENARIOS AND THEIR FORMAL

REPRESENTATION

Figure 3.1.: Conceptual simulation architecture as FMC block diagram [28]

architecture depicted in figure 3.1.

As we can see from the figure, a simulation scenario consists of process models, resource
models, and also incorporates the simulation parameters. This is not the case for the
blueprint in [29], where they are separately stored. During the transformation of a valid
scenario into a Petri net, the times configured by the user need to be mapped from the
user-friendly format to the format of the simulation engine, which is a simple integer
value. See section 3.3 for details on the mapping and section 3.2 for time modeling.
Depending on the size and structure of the generated net, it is split into one or multiple
partitions (cf. chapter 4). Each partition is simulated by a simulation engine following
the DES approach. Each engine has its own local clock, event list, marking, and log.
The simulation initiator is responsible for distributing the partitions to the engines and
collecting their simulation results. After the complete log data is gathered, a report
is generated and returned to the user. As the report should contain user-friendly time
representations, the time mapper is used again.

3.2. Simulation Modeling

Before we can use our models as an input for the simulator, we need to define the allowed
modeling constructs. Beginning with section 3.2.1, we informally describe the supported
modeling elements and simulation parameters. Based thereon, we give formal definitions
in section 3.2.2. The modeling requirements MR1−MR5, stated in section 1.1, serve as
guidelines for our definitions.

3.2. SIMULATION MODELING 25

3.2.1. Models and Their Configuration

Recalling definition 2 of a business process, a business process is more than a pure causal
order of tasks. Instead we need to consider the process’ environment, where we dis-
tinguish human (organizational environment) and non-human (technical environment)
resources. In addition, several timing constraints have to be regarded.

Resource Modeling

For the scope of this work, the term resource refers to any physical entity that is required,
consumed, or produced in the context of the process execution. As mentioned above, we
distinguish human and non-human resources.

Non-human resources are characterized by their name and an amount. Examples are
simple things like nails, but also complex systems like machines. As these two examples
show, we can further distinguish between reusable and consumed or produced non-
human resources. Due to their simple nature, non-human resources are modeled using
lists, where each entry specifies the resource’s name and its available amount.

Human resources are more complex. From an organizational perspective, humans are
grouped into teams and organizational roles, which are themselves part of more coarse-
grained structures. This structural information can be represented using, e.g., orga-
nizational charts1, satisfying the claim of requirement MR1 for a graphical modeling
language. In addition to the organizational structure, we attribute human resources
with working times. For this work, we assume that the working times are specified on
the basis of weekdays and do not change from one week to another, i.e. a working time
specified for Mondays, will be the same on every - simulated - Monday.

There are different possibilities describing the behavior of human-resources during their
working times. First, they could arbitrarily choose the next task to perform, disregarding
its possible duration and thereby risking extra hours. Second, they could arbitrarily
choose a task, but pause its execution at the end of the working time, i.e., there will be
no overtimes. Third they could choose the next task according to the amount of working
time left.

Of course, there are a lot of more aspects human resources might be attributed with, e.g.
technical or functional skills, which will also affect the simulation. In addition, there are

1http://en.wikipedia.org/wiki/Organigram

http://en.wikipedia.org/wiki/Organigram

26
CHAPTER 3. SIMULATION SCENARIOS AND THEIR FORMAL

REPRESENTATION

several approaches for capturing human behavior in simulation models. For the focus of
this thesis, however, we restrict the configuration options for human resources to their
working times and refer the interested reader to, e.g., [35], [5], and [60].

Process Modeling

There exist several graphical business process modeling languages. Common examples
are event-driven process chains (EPC) ([27]), YAWL ([54]), and the Business Process
Model and Notation (BPMN) ([22]). Although they differ with respect to their graph-
ical representation and their expressiveness, they commonly support a large set of core
modeling constructs. For the following considerations, we take BPMN as a modeling
notation.

As BPMN is a very powerful language, providing also semantically complex constructs,
we restrict the set of allowed constructs, to a reasonable but still expressive set. For
this thesis the following elements are considered: Tasks, Call Activities/Collapsed Sub-
Processes, Start Events, End Events, Parallel Gateways, Exclusive Gateways, Event-
based Gateways, Sequence Flows, and Message Flows. As the simulation is based on
resources, the support for Pools and Lanes is inherently given. The chosen set implies
the focus on process orchestrations. Furthermore, the following constraints are imposed:

• The allowed types for events are: Standard, Message, Timer, and Link.
• Activities can be simple or looping.
• Sub-Processes must not have any Intermediate Events attached to their boundaries.

This constraint explicitly precludes the Cancel Case control flow pattern ([46]).
• Message Flow arcs are only connecting events with other events; i.e. their source

and target nodes are no Tasks or Pools.
• Gateways are either split nodes or join nodes, i.e. they either have multiple incom-

ing or multiple outgoing Sequence Flow.
• Except for gateways, all nodes have at most one incoming and at most one outgoing

Sequence Flow arc.

For ensuring the latter two constraints, process models containing diverging constructs
can be normalized by the introduction of additional nodes. For the sake of simplicity,
we claim that each process has exactly one End Event and exactly one Start Event, and
require the process to be safe and sound, i.e., it neither contains a deadlock nor a lack of
synchronization ([22]). These are important properties for determining the termination
of a process instance. However, they explicitly preclude the Implicit Termination control

3.2. SIMULATION MODELING 27

flow pattern ([46]). For detailed definitions of soundness and safety in the context of
Petri nets we refer the reader to [36]. As the BPMN specification ([22]) refers to the
concept of tokens, these definitions similarly apply to BPMN process models.

For processes connected by Message Flow arcs, we require that it is clear, at any time,
which concrete process instances are communicating. This property is similar to the
local enforceability of process choreographies ([11]). Figure 3.2 illustrates the properties
of soundness, safety, and message exchanges that are valid w.r.t. our simulation.

T1

T2

... ...

(a)

T1

T2

... ...

(b)

... ...

... ...

(c)

... ...

...

(d)

Figure 3.2.: (a) a deadlock example, (b) a lack of synchronization, (c) an invalid com-
munication, and (d) a valid communication

In figure 3.2a, we have an exclusive choice between tasks T1 and T2. However, the gate-
way joining both branches requires them both to be executed, i.e. the gateway cannot be
executed which results in a deadlock. In figure 3.2b, the concurrently executed branches
are not properly joined by the Exclusive Gateway, which is a lack of synchronization.
Figure 3.2c shows a message exchange between two processes. Since both processes have
been started at the time the message is delivered, we cannot automatically identify which
process instances are communicating, i.e. this message exchange is invalid for simulation.
In contrast, figure 3.2d depicts a valid message exchange. As the first message creates
the instance of the upper process, it is obvious to which instance the response, i.e. the
second message, is delivered.

Using the defined set of elements and the imposed constraints we are able to express all
control flow patterns claimed by modeling requirement MR2.

We assume that a process can be uniquely identified by a respective global identifier.
Further, each element of a process can be uniquely identified within its process by a
respective identifier. The elements of process models can be attributed with the following
aspects:

Execution/Wait Times Tasks are annotated with execution times. They can be speci-
fied as a constant value or by using a distribution function. Receiving Intermediate
Events are annotated with durations. If the event is a Timer Event only constant

28
CHAPTER 3. SIMULATION SCENARIOS AND THEIR FORMAL

REPRESENTATION

durations are allowed; otherwise, distribution functions can be used.

Branching Probabilities For Exclusive Gateways each outgoing Sequence Flow is anno-
tated with a probability ranging from 0.0 to 1.0, indicating the likeliness that the
respective branch is chosen. The probabilities for a single gateway must sum up
to 1.0.

Exception Probabilities Attached Intermediate Events are annotated with a probability
ranging from 0.0 to 1.0, indicating the likeliness that the event will interrupt the
task it is attached to.

Resource Consumption For Tasks it can be specified which and how many non-human
resources are consumed, or used, by this task.

Resource Production Analogous to the resource consumption, it can be specified that
a Task returns resources after execution or newly creates non-human resources.

Performer In addition to non-human resources, human resources can be specified to be
the performer of a Task. A task can have at most one performer. Performers
can be specified on the basis of single persons, roles or organizational units. The
specification can be made for each single task, as well as for the Pool or Lane in
which the task resides. Supported workflow resource patterns are Direct Allocation
and Role-based Allocation (cf. [45]).

Case Handling If subsequent tasks of a process instance have to be performed by the
same human resource, which corresponds to the concept of case handling ([59]),
tasks can be designated to start or complete such a case.

Instantiation Distributions Start Events of processes that are not called from other pro-
cesses must be attributed with instance creation constraints. Such constraints are
composed of a time frame, e.g. Mondays from 9 a.m. to 5 p.m., and a distribu-
tion function or constant time value, e.g. one hour. Analogous to the working
times of human resources, we assume that the configurations stay constant over
all simulated weeks.

Modeling Time

Modeling requirement MR3 describes versatile usages of time related artifacts, where we
distinguish time durations and time instants. From a user perspective, modeling time
must be available in a comprehensible format.

3.2. SIMULATION MODELING 29

Values of durations, i.e. the execution time of tasks, the delays of events, or the frequency
at which new instances are created, are specified as combinations of days, hours, minutes,
and seconds in the format recommended by ISO standard 8601 [1]. If a task lasts one
day, two hours, three minutes, and four seconds, the user annotates it with the value
1d2h3m4s. Figure 3.3 gives examples for specifying a duration. In Figure 3.3a a constant
value is specified, i.e. each task execution lasts ten minutes. In Figure 3.3b an equally
distributed duration is set, i.e., each task execution lasts between two and ten minutes
where each value is equally likely to occur. Please note that the smallest time units are
seconds. Using distribution functions, the user is enabled to model varying execution
times. Obviously, there are further distribution functions. However, for the scope of this
work, we restrict them to equal distributions, while remarking that the created prototype
can be easily extended by further functions.

(a) (b)

Working Times

At . . . From To

weekdays 9:00 17:00
Saturdays 8:00 12:00

(c)

Instance Creation

At . . . From To Frequency

weekdays 9:00 17:00 1h
Saturdays 8:00 12:00 equal(1h, 2h)

(d)

Figure 3.3.: Time modeling examples: (a) A task with constant execution time, (b) a task
with equally distributed execution time, (c) a working time configuration,
and (d) and instance creation configuration

The specification of time instants is required for the specification of working times and
the time frames during which process instances can be created. As mentioned earlier,
these values are specified on the basis of weekdays. For time instants the usual 24-hour
time format is used. Examples for working time and instance creation configurations
are shown in figures 3.3c and 3.3d. The latter denotes the following facts: At weekdays,
i.e. Monday to Friday, between 9 a.m. and 5 p.m. every hour a new instance is created.
Further, at Saturdays between 8 a.m. and noon every one to two hours a new instance
is spawned.

30
CHAPTER 3. SIMULATION SCENARIOS AND THEIR FORMAL

REPRESENTATION

3.2.2. Formal Model for Simulation Scenarios

Within the following sections, the three essential parts of a simulation scenario - pro-
cesses, human resources, and non-human resources - will be defined. Subsequently, we
give a general definition of simulation scenarios and their validity constraints.

Resources

Since there is a major difference between both concepts, human and non-human resources
are defined separately.
Definition 10 (Organizational Model) An organizational model is a tuple OM =
(N,E), where

• N is a set of nodes that can be partitioned into disjoint sets of organizational units
NU , organizational roles NR, and persons NP , and
• E ⊆ (NU × (NU ∪NR))∪ (NR×NP) is a set of directed edges, indicating that one

organizational entity is part of another entity.

As already stated in section 3.2.1, definition 10 is derived from the structure of orga-
nizational charts, which provide a basic graphical notation for modeling organizational
structures. By using these charts it is possible to specify one or more roles for a spe-
cific person. Figure 3.4c depicts an exemplary organizational chart. For this exam-
ple, we find: NU = {Retail Corp.}, NR = {Worker WH,Worker OM, Inspector}, and
NP = {Alice,Bob,Charles,Eric, James, Steve}.

Although these models provide basic information on which and how many resources are
available, we have to add a construct for capturing the working times of each person.
Definition 11 (Human Resource Model) Let TS be a set of timestamps. A human
resource model is a tuple HRM = (OM,WTime), where

• OM is an organizational model, and
• WTime : NP → 2TSxTS is a function assigning a set of time intervals to each

person in OM . The time intervals indicate the working times of the person, i.e.,
the time the specific person is available for performing tasks.

In order to support other human aspects, like skills (see section 3.2.1 for examples),
definition 11 might be extended by further functions.
Definition 12 (Non-Human Resource) A non-human resource is a triple NHR =
(name, quantity, type), where

3.2. SIMULATION MODELING 31

• name is a descriptive name of the resource,
• quantity is the available amount of this resource, and
• type ∈ {TOOL,MATERIAL} is the resource’s type, indicating if it is consumed

or can be re-used.

Since there will generally be more than one non-human resource, we introduce the con-
cept of a warehouse.
Definition 13 (Warehouse) A warehouse is a set of non-human resources, where the
name of each resource is unique within the warehouse.

Processes

Inspired by the definitions of Process models by Weske ([64]) and Core BPMN Processes
by Dijkman ([13]), we define the concept of Simulation Business Processes, implying a
set of allowed modeling constructs.
Definition 14 (Simulation Business Process) A simulation business process is a
tuple PSIM = (O, F , TType,GType,EType,EDir,Excp), where:

• O is a set of objects which can be partitioned into disjoint sets of activities A,
events E, and gateways G.
• A = T ∪ S, where T is a set of tasks and S is a set of sub-process invocations. T

and S are disjoint, i.e. T ∩ S = ∅.
• E = ES ∪ EI ∪ EE, where ES is a set of start events, EI is a set of intermediate

events, and EE is a set of end events. ES, EI , and EE are mutually disjoint.
• F ⊆ O × O is the control flow relation, i.e. a set of directed arcs connecting

objects. Let •F(o) = {x|(x, o) ∈ F} and F•(o) = {x|(o, x) ∈ F} be the sets of
input and output objects of an object o ∈ O. If o ∈ A ∪ EI then |•F(o)| = 1 and
|F•(o)| = 1; if o ∈ ES then |•F(o)| = 0 and |F•(o)| = 1; if o ∈ EE then |•F(o)| = 1
and |F•(o)| = 0.
• TType : T → {SIMPLE, LOOP} is a function assigning a type to a task, where SIMPLE

implies exactly one execution per task activation and LOOP implies zero or more
executions on a single activation in sequence.
• GType : G → {XORSplit, XORJoin, ANDSplit, ANDJoin, EventSplit} is a function

assigning a control flow construct to each gateway. If GType(g) ∈ {ANDSplit,
XORSplit, EventSplit} then |•F(g)| = 1 and |F•(g)| > 1; otherwise |•F(g)| > 1
and |F•(g)| = 1.
• EType : E → {Standard, Timer, Message, Link} is a total function assigning a type

32
CHAPTER 3. SIMULATION SCENARIOS AND THEIR FORMAL

REPRESENTATION

to an event, with

EType(e) ∈

{Standard, Timer, Message} if e ∈ ES
{Standard, Timer, Message, Link} if e ∈ EI
{Standard, Message} if e ∈ EE

• EDir : EI → {IN, OUT} is a function assigning a direction to an intermediate event,
where IN indicates the reception and OUT the triggering of an event.
• Excp : EI T is a partial function assigning an intermediate event to a task, such

that the occurrence of the event will interrupt the execution of the task.

Definition 14 implies the set of BPMN constructs, outlined in section 3.2.1, which can
be used for modeling processes that can be simulated by our engine. Although the
definition is tailored to BPMN, it can be applied to other modeling languages as well. For
identifying processes and their elements, let pid(p) denote the globally unique identifier
of a simulation business process p and let eidp(e) denote the identifier of element e within
process p.

In order to provide sufficient details for a reasonable simulation a Simulation Business
Process Model must attribute simulation business processes with the additional infor-
mation described in section 3.2.1. For the following definition, let TS be the set of time
stamps and let D be a set of distribution functions. A function d ∈ D takes a time
stamp t1 ∈ TS and a random value v ∈ [0, 1] as inputs, and returns a time t2 ∈ TS,
with t1 + t2 ≥ t1. Please note that this definition of D is equal to its definition for timed
colored Petri nets in section 2.4.
Definition 15 (Simulation Business Process Model) Let NHR be a set of non-
human resources, and HR a set of human resources. A simulation business process
model is a tuple PMSIM = (PSIM , M, Time, Prob, ExcpProb, Cons, Prod, Perf, Loop,

InstCrea, Case, Call), where

• PSIM is a set of simulation business processes with elements P1, P2, . . . , Pn. Based
thereon, we define sets XSIM =

⋃n
i=1Xi, where Xi is the respective element in Pi,

i.e. ASIM =
⋃n
i=1Ai is the set of all activities in PSIM .

• M : EMS

SIM × EM
R

SIM is the communication flow relation, where EMS

i = {e|e ∈ Ei ∧
ETypei(e) = Message ∧ EDiri(e) = OUT} is the set of sending message events of
process Pi and EMR

i = {e|e ∈ Ei ∧ ETypei(e) = Message∧ EDiri(e) = IN} is the set
of receiving message events of process Pi.
• Time : ASIM ∪ ESIM D, is a partial function assigning a distribution function

to a task or event. For tasks the distribution function returns the duration of the

3.2. SIMULATION MODELING 33

task; for events the time until the event is received. Events are only part of the
function’s domain if they cannot be simulated otherwise.
• Prob : FGX

→ [0, 1], is a function assigning a probability to an edge, where FGX

is the subset of edges exiting exclusive split gateways, i.e. FGX
= {(g, x)|(g, x) ∈

FSIM ∧g ∈ GSIM ∧GTypeSIM (g) = XORSplit}. For each gateway, the probabilities
of all outgoing edges must sum up to 1.
• ExcpProb : EISIM

 [0, 1] is a function assigning a probability to an attached
intermediate event. The probability denotes the likeliness, that the event will occur
during the task’s execution.
• Cons : ASIM 2NHR×N is a partial function describing the resource consumption

of an activity. For an activity a ∈ ASIM , Cons(a) returns a set of pairs indicating
which and how many resources this activity consumes. These resources along with
their cardinality are required to start one execution of the respective activity.
• Prod : ASIM 2NHR×N is a partial function describing the resource production of

an activity. For an activity a ∈ ASIM , Prod(a) indicates which and how many re-
sources are newly, or again, available after the activity has completed one execution
run.
• Perf : ASIM HR is a partial function assigning a human performer to an

activity. As for Cons the availability of the performing human resource is essential
for starting the execution.
• Loop : T {l|l : [0, 1]→ N} is a partial function assigning a distribution function

to tasks t ∈ T with TType(t) = LOOP to speficy the number of task executions per
task activation.
• InstCrea : ESSIM

 2TS×TS×D is a function associating start events with distri-
bution functions to specify the instance creation rates depending on distinct time
frames.
• Case : TSIM {START, END} is a partial function assigning a case configuration to

tasks. Thereby, a task t ∈ TSIM is specified to start or complete a case.
• Call : SSIM ESSIM

is a partial function assigning a start event es ∈ ESSIM
to a

sub-process invocation s ∈ SSIM , denoting that simulating s is propagated to the
simulation of es.

Simulation Scenarios and Their Validity

We integrate the concepts defined above into the definition of a simulation scenario.
Definition 16 (Simulation Scenario) A simulation scenario is a tuple S = (PM,

34
CHAPTER 3. SIMULATION SCENARIOS AND THEIR FORMAL

REPRESENTATION

HR,W, start, end), where

• PM is a non-empty set of simulation business process models,
• HR is a set of human resource models
• W is a warehouse, and
• start and end define the start and end of simulated time, with start < end.

Let S = (PM,HR,W, start, end) be a simulation scenario. For convenience, let PMi

denote an element of PM, and HRk an element of HR. To be a valid input to a
simulation engine a scenario must fulfill the following constraints:

• All simulation business processes have exactly one end event and exactly one start
event. Further, they are sound, safe, and message exchanges are valid for simula-
tion. See section 3.2.1 for details and examples on these properties.
• For each human performer of activities in any PMi, there must be a node in the

organizational model of any HRk representing this human resource. Remember
that the set of performers is defined by function Perf of each PMi.
• For each non-human resource associated with an activity in any PMi, the ware-

houseW must contain a resource of the same name. The used non-human resources
are defined by functions Cons and Prod of each PMi.
• For each sub-process invocation s in any PMi, exactly on of the following must

hold:
– s is part of the domain of function Call, or
– s is at least part of the domain of function Time of the respective process
PMi.

This constraint implies that there is either another process that can be simulated
when s is invoked, or s can be simulated like an ordinary task by using the given
function values.
• A single organizational entity occurs in exactly oneHRk, i.e. there are no semantic

intersections or conflicts between the elements of HR.
• For each receiving event er in any PMi, i.e. start events and receiving intermediate

events, exactly one of the following must hold:
– There exists a throwing event et in any PMi, that corresponds to er, i.e. the

simulation of et leads to the simulation of er, or
– er is part of the domain of function Time of the respective process model
PMi, or

– if er is attached to a task, it is part of the domain of function ExcpProb of
the respective process model PMi.

3.3. MAPPING SIMULATION SCENARIOS TO PETRI NETS 35

Applying this constraint ensures that any receiving event is potentially enabled to
be received during the simulation.

3.3. Mapping Simulation Scenarios to Petri Nets

Based on the definitions of processes and resources, we define a mapping of simulation
scenarios onto the formalism of extended timed colored Petri nets. For illustrating
this mapping, we employ the example scenario depicted in figure 3.4. It consists of two
processes Receive Order and Receive Shipment in figures 3.4a and 3.4b, an organizational
chart displaying six human resources paired to three roles in figure 3.4c, the initial
inventory in figure 3.4d, the instance creation configuration depicted in figure 3.4e, and
the working time specification in figure 3.4f.

The two business process models capture the different relations that can exist. On the
one hand, there are hierarchical relations via sub-process invocations. An example is
the call activity Order at Producer in figure 3.4b. On the other hand, we find resource
relations. As we can see from figure 3.4c, James is part of the role Inspector. As one
process is referring to the role and the other one to James, both processes are competing
for the human resource James, assuming there are sufficient process instances. We
further observe a resource relation between the tasks Store Products and Pack Shipment,
as both employ to the resource Product.

The general mapping algorithm can be divided into the following steps:

1. Map all simulation business process models to one single extended timed Petri net.
(cf. section 3.3.2)

2. Add human and non-human resources to the net, while respecting the combination
of organizational structure and performers for human resources. (cf. section 3.3.3)

3. Facilitate the net created in steps 1 and 2.

As step 1 is showing, we decide to map all processes to a single Petri net. Thus, all process
instances will be represented in this single net. This is a straight-forward and conve-
nient decision. First, the ETCPN constructs, especially colored tokens, are sufficiently
expressive to represent resources and distinguish between different process instances,
even if they are running in the same net. Second, the duplication of the net for multiple
process instance is easily exceeding the available memory. Third, as the processes are
sharing resources, such duplication leads to the duplication of some resource places, i.e.
places containing tokens that represent human resources. For those places computational

36
CHAPTER 3. SIMULATION SCENARIOS AND THEIR FORMAL

REPRESENTATION

(a) Receive Shipment (b) Receive Order

(c) Organizational Structure

Inventory

Resource name Amount

Product 20

(d) Initial Inventory

InstCrea(Shipment Received)

At. . . From To Frequency

. . . weekdays 9:00 17:30 1h

. . . Saturdays 8:00 11:30 2h

InstCrea(Order Received)

At. . . From To Frequency

. . . weekdays 9:00 18:30 equal(30m, 1h)

. . . Saturdays 8:00 12:30 2h

(e) Instance Creations

WTime(Retail Corp.)

At. . . From To

. . . weekdays 9:00 17:30

. . . Saturdays 8:00 13:00

(f) Working Times

Figure 3.4.: An exemplary simulation scenario

3.3. MAPPING SIMULATION SCENARIOS TO PETRI NETS 37

overhead is necessary in order to ensure consistency among their multiple occurrences.
Fourth, the resulting single net is explicitly - meaning structurally - showing all relations
between the processes of the simulation scenarios.

3.3.1. Mapping Time

The user-friendly time format is unnecessary complex when it comes to simulation.
As shown in the conceptual architecture in section 3.1, we employ a time mapper for
transforming times between the user’s time representation and a format suitable for
simulation. Within the simulation engine the only time unit is a second, which is the
smallest unit that can be configured within the processes. Therefore, the simulation
time is represented as a simple integer value, denoting the virtual, i.e. simulated, time
that has already elapsed in seconds. The simulation always starts at a virtual time of
0, representing the start time value configured for the scenario. This is, if the simulated
time should start at Monday, October 31, 2011, 8:00 a.m. this time stamp is the user-
friendly representation of value 0.

Transforming durations is straightforward, since this is the usual conversion of minutes,
hours, and days into seconds. If distribution functions are specified, their parameters
are simply replaced by the resulting values.

Transforming time instants, however, takes a little more effort. Their representation
in virtual time is always computed with respect to the configured start time of the
simulation, i.e. if the simulated time should start at 8:00 a.m. the representation of 9:00
a.m. at the same day is 3600, i.e. one hour after start; if the simulated time starts already
at 7:00 a.m. the result would be 7200.

Working times and time frames for process instance creation must be converted along
with their repetitive occurrence in each simulated week. A naive approach would be to
explicitly compute them for the whole simulated time. However, as their frequency of oc-
curring is constant, i.e. weekly, this process can be simplified using the modulo operator.
Representing a week as seconds is 7(days)×24(hours)×60(minutes)×60seconds = 604800
seconds.

Mapping the working time configuration of figure 3.4f, assuming the start of simulated
time at Monday, October 31, 2011, 8:00 a.m., results in table 3.1. For the five weekdays,
five lines are added to the table; the last line represents Saturdays. Interpreting the
table with respect to a point in simulation time ts, the human resources are available

38
CHAPTER 3. SIMULATION SCENARIOS AND THEIR FORMAL

REPRESENTATION

start end mod

3600 32400 604800
90000 118800 640800
176400 205200 604800
262800 291600 640800
349200 378000 604800
432000 446400 640800

Table 3.1.: Transformed working times of figure 3.4f

if we find a pair (start, end), such that start ≤ ts(mod 604800) ≤ end. Analogous
transformations apply for the time frames in figure 3.4e.

3.3.2. Mapping Simulation Business Process Models

Similar to the mappings presented in [13] and [29], we describe our transformations
graphically, opposing a simulation business process model element (SPM construct) with
its extended timed colored Petri net representation (ETCPN construct). Throughout
the mapping, we use the colors and their respective variables defined in table 3.2. The
definitions of random values, integers, and strings are trivial. Process-IDs are kept in a

Color Variable(s) Type Literals Operation(s)

random value r R 0 ≤ r ≤ 1 +,−
integer n N 0, 1, 2, . . . +,−
string s, x, na, ro String “123”, “abc”
process-ID pid Stack [] push(x|[]) →[x|]

[h|] push(x|[h|t]) → [x|[h|t]]

[h|t] pop([x|[h|t]]) → [h|t]

correlation c Set {} {}+ s→ {s}
{s1, s2, . . .} {s1, s2} − s1 → {s2}

working time w ∈ N× N (0, 1200)

Table 3.2.: Colors and variables used within the ETCPN transformation

stack, since by hierarchical process relations a token might carry multiple process-IDs.
The stack consists of a head element, representing the most recent process ID, and a tail,

3.3. MAPPING SIMULATION SCENARIOS TO PETRI NETS 39

which is again a, probably empty, stack of IDs. Similar to process-IDs, correlation keys,
that are required for simulating message exchanges, are kept in a simple set. Working
times are pairs of integers referring to the virtual time. As the only frequency considered
in this thesis is a week, we can omit the modulo-value.

Within the transformations depicted below, the function P() and T() create unique
names for places and transitions. Both functions can have arbitrary many parameters.

Figure 3.5 depicts the ETCPN transformations of basic control flow elements. Except for
the XOR-Split the mapping of gateways is straightforward. Since a gateways does not
consume time, the firing delay is 0 throughout the whole simulation. For the XOR-Split
the configured probabilities need be considered. Therefore, a random value is created
that serves as a variable within the guard conditions. Of course, the assigned random
value is equally distributed between 0 and 1.

A transition representing a Start Event puts a new process-ID onto the stack of process-
IDs. Analogously, a transition representing an End Event removes the topmost element
from the stack. For the start event the instance creation configuration is assigned to
the respective transition. The mapping of basic intermediate events is again straight-
forward. Be aware, that sending events, i.e. EDir = OUT, do not consume time and
fire immediately. On the other hand, receiving events, i.e. EDir = IN, can have delays.
Please remember that Timer Events allow only constant delays.

A Task is represented by a single transition, that is connected to the respective resource
places - highlighted by a gray background -, as configured by functions Cons,Prod, and
Perf. For non-human resources n ∈ N tokens can be consumed or produced for a single
transition firing, which is denoted by n′ <>. If the task is a loop-task, the number
of iterations is determined by the given distribution function. As seen for the gateway
probabilities, the function is called using a generated random value. The determined
number of iterations serves as a parameter within the guard transitions in order to
determine the completion of the loop. As we see from the mapping, the resources are
not allocated en bloc for all iterations, but each iteration is again competing for the
shared resources. This might be subject to discussion and future investigations.

A Call Activity for which the Call-function is defined is mapped onto transitions that
initiate the call and the return from the called process. The process-IDs are used in
order to determine which instance is resumed if a sub-process invocation completes.
Otherwise, if the respective Call Activity is not part of the domain of function Call, it is
handled like an ordinary Task.

40
CHAPTER 3. SIMULATION SCENARIOS AND THEIR FORMAL

REPRESENTATION

Figure 3.5.: ETCPN transformations of basic control flow elements

3.3. MAPPING SIMULATION SCENARIOS TO PETRI NETS 41

Please note: By the way dependencies on non-human resources are represented, it is
redundant if the specific resource is a tool or material, as “re-using a tool” is equal to
“consuming and re-producing a material”. Further, a tool might not get returned after
each task, but is kept for a sequence of tasks.

In addition to these basic transformations, figure 3.6 shows mappings of more elaborate
concepts. As already mentioned before, for simulating message exchanges between dif-
ferent process instances a correlation key is created, when the first message is sent. The

Figure 3.6.: ETCPN transformation of message flows, attached events, and event-based
decisions

42
CHAPTER 3. SIMULATION SCENARIOS AND THEIR FORMAL

REPRESENTATION

correlation key is kept until the instances terminate and is used for all messages that are
sent. As the transformation shows, if a sending message event is the source of a Message
Flow arc, it must not have an execution time configured.

An Intermediate Event that is attached to the boundary of a task, requires the usage of
escape arcs. Initially, the task and a branch that may lead to the interrupting event are
concurrently enabled. The occurrence of the event is simulated by a random value that
serves as a parameter for the guard conditions. As explained for the ETCPN example in
figure 2.3b in section 2.4, a token at Place P (e, y2) will interrupt the firing of transition
T (t). Thereby, the process continues with y2; otherwise, it continues with y1 after T (t)
has completed firing. In case such an interrupt occurs while T (t) has already started
firing, the tokens consumed by T (t) must be put back to their original places. This is
particularly import for tokens representing human or non-human resources. For non-
human resources it might be subject to discussion if they are always put back, or, in case
of consumed materials, might be actually lost. However, for the scope of this thesis, we
assume the simple case described before.

Similar mechanisms apply for the transformation of an Event-based Gateway. The suc-
ceeding Intermediate Event nodes are mapped to transitions as explained before. In
order to guarantee that only one event occurs for a respective process instance, the out-
put places of the transitions serve as escape places for the other ones. Thereby, only one
transition can complete firing.

Applying the described transformations to our example scenario in figure 3.4, results in
the two Petri nets depicted in figure 3.7. For the sake of simplicity, we only show the
structural results and omit the bindings. The transition names have been abbreviated.
Examining the two nets, we easily observe that both nets refer to a place Product. Such
intersections of the nets mark places where the nets can be merged, i.e. “glued together”.
The merge result for our example is depicted in the next section.

3.3.3. Mapping Human and Non-Human Resources

As shown in the ETCPN transformations, each resource that is part of the co-domain of
the functions Cons,Prod, or Perf, is mapped to a place labeled with the resource’s name.
This is satisfactory for non-human resources, where we add the respective number of
tokens according to the initial inventory. With respect to our running example, we add
20 equal tokens to the place Product. For human resources, however, their hierarchical
structures may require changes to the structure of the net.

3.3. MAPPING SIMULATION SCENARIOS TO PETRI NETS 43

(a) ETCPN structure for process Receive Shipment (figure

3.4a)

(b) ETCPN structure for process Receive Order (figure 3.4b)

Figure 3.7.: Mapping Results for the processes in figure 3.4

We seek to maximally partition the set of human resources into disjoint sets, such that
each of these sets is represented by a single resource place within the Petri net. The
finest-grained case would be to have each single human being represented by a single
place. The least partitioned case is to have all human resources within a single place.
Obviously, we seek to partition the set in order to reduce the size of structural conflicts
within the Petri net.

The partitioning of human resources is influenced by two aspects. On the one hand,
there are the configuration functions mentioned above. On the other hand, the grouping
of resources according to the organizational structure is a factor. We will explain their
interplay using our running example, based on algorithm 2.

From the process mapping we get four resource places having the labels Worker WH,
Worker OM, Inspector, and James, forming the set hrPlaces. Parsing the organizational
chart we receive the set persons = {Alice,Bob,Charles,Eric, James,Steve}. Initially,
each of these persons is mapped onto a colored token holding the person’s name, its
roles, and its working times. The generated tokens are added to the places they be-
long to. Please note that a token might be added to multiple places and that a token
representing a human resource is distinct from tokens representing other, probably also
human, resources. For our example, we receive the distribution of tokens depicted in

44
CHAPTER 3. SIMULATION SCENARIOS AND THEIR FORMAL

REPRESENTATION

table 3.3.

Algorithm 2: Mapping of Human Resources
Input: persons is a set of persons; hrPlaces is a set of places for human resources

hrTokens ←− {} ;
for p ∈ persons do

t ←− tokenFrom (p) ;
addToken (t, placesForPerson (p)) ;

end
for p1 ∈ hrPlaces do

for p2 ∈ hrPlaces do
if p1 6= p2 ∧ tokensAt (p1) ∩ tokensAt (p2) 6= ∅ then

p1 ←− merge (p1, p2) ;
hrPlaces −{ p2 } ;

end

end

end

In the second step of algorithm 2, places whose token sets are intersecting are merged
together, i.e. their token sets are united and the connections and bindings to and from
transitions are adapted. As we can see from table 3.3, places James and Inspector
have intersecting token sets. Therefore, the places are merged. With respect to the
merge of place Product at the end of the previous section, we receive the final net
structure depicted in figure 3.8. Please note, that the transitions representing the Parallel
Gateways of the original model, have been collapsed into their preceding (OaP) and
succeeding (CS) transitions.

Place Tokens (persons)

Worker WH { Bob, Alice }
Worker OM { Charles, Eric }
Inspector { James, Steve }
James { James }

Table 3.3.: Token distribution after the first step of algorithm 2

3.3. MAPPING SIMULATION SCENARIOS TO PETRI NETS 45

Figure 3.8.: Final net structure for the example in figure 3.4

3.3.4. Remarks and Additional Mappings

Definition 15 of a Simulation Business Process Model refers to the concept of case han-
dling introduced by van der Aalst et al. in [59]. By assigning a case to a human resource,
the resource is designated to perform all tasks belonging to this specific case.

Within this work, we assume a very simple case handling mechanism. If a case is
configured, a human resource will subsequently perform all activities for this case without
having the opportunity to participate in other process instances in the meantime. This
may, at first glance, partly contradict the assumption that human resources participate
in multiple processes at a time. However, it is a rather realistic approach with respect
to, e.g., manufacturing processes where consecutive steps are usually performed without
interruption. Similar examples can be found in versatile domains. Nevertheless, we
consider this approach as subject to discussion and future investigations.

From the perspective of extended timed colored Petri nets, our interpretation of the
case handling paradigm, leads to tokens carrying other tokens. As an example consider
the process in figure 3.9a. Task T1 is designated to start a case. Thereby, the token
representing the human resource in figure 3.9b is not immediately returned after the
firing of transition T1, but instead bound to the token holding the process ID. After
firing transition T2, for which the case is designated to end, the human resource token
is returned to its original place. If a task between T1 and T2 is interrupted by an
attached intermediate event the bound token is not returned to its original place, but
transferred to the path following the event. If the resource should be returned, the first
task following the event, must be set to end the case.

As mentioned in the overview of the mapping algorithm in section 3.3, the generated net

46
CHAPTER 3. SIMULATION SCENARIOS AND THEIR FORMAL

REPRESENTATION

(a) The initial process fragment

(b) The resulting ETCPN fragment

Figure 3.9.: Case handling example

is facilitated in the end. This facilitation targets the removal of redundant τ -transitions
in order to reduce the size of the net, as we have observed for the parallel split and join
for our running example.

We assume the mapping to be process-aware, denoting that within the resulting Petri
net the information which transition belongs to which original process is still available.
For a transition t and a simulation business process p, let process ref(t) = pid(p) be the
process reference of t. Regarding the mapping result of our running example in figure
3.8, we observe: For t ∈ {SR,US,CP,SP, τ1}, process ref(t) = Receive Shipment; for
t ∈ {OR,OaP,PS,CI,CS,ShP, τ2}, process ref(t) = Receive Order.

47

4. Simulation Engine and Model

Partitioning

As a result of the transformations described in the previous chapter, we receive an
extended timed colored Petri net explicitly showing all relations and dependencies that
are incorporated in a simulation scenario. This net forms the basis for our simulation. As
outlined in the introduction to this thesis, we consider the distribution of our simulation
among a set of simulation engines. By using multiple engines for a single simulation
run, we expect a gain on the simulation performance. In order to achieve this gain, we
seek to exploit the parallelism inherent to the processes of our scenarios. Therefore, we
partition the Petri net into a set of spatial regions (cf. requirement TR1). Each of the
simulation engines is assigned to exactly one of these partitions.

Before we explain and investigate model parallelism in section 4.2, section 4.1 describes
a simulation engine that is able to participate in such a distributed setting. Based
on the partitioning guidelines outlined in section 4.2, we propose two approaches for
partitioning the net in sections 4.3 and 4.4.

4.1. A Logical Process for Conservative Distributed DES

Section 2.5 has already outlined the vital parts of distributed discrete event simulation
(DDES). As extended timed colored Petri nets are our formalism of choice, we need
to develop a logical process (LP) whose engine knows their execution semantics (cf. re-
quirement FR3). Further, a respective LP must contribute to the technical requirements
TR2 and TR3, i.e., facilities for communication and synchronization between multiple
engines must be provided.

As stated by literature (e.g. [9]), an appropriate combination of synchronization and
model partitioning is crucial for a speed-up of the simulation, i.e., the synchronization
protocol affects the notion of a reasonable model partitioning. For the scope of this

48 CHAPTER 4. SIMULATION ENGINE AND MODEL PARTITIONING

thesis, we consider a conservative synchronization protocol for assuring causality among
the logical processes. On the one hand, the implementation of this protocol is straight-
forward. On the other hand, we emphasize our focus on model partitioning, since the
investigations on partitioning algorithms might be re-used for other synchronization pro-
tocols.

Before we outline the concepts of conservative distributed DES, we define the concept
of subnets of an extended timed colored Petri net. For a function f with domain D, we
use f |S to denote the restriction of f to a subset S ⊆ D.
Definition 17 (Subnet) Let ETCPN = (P, T, F,Esc, T , λ,Σ, γ, µ, ε, TS,D, δ) be an
extended timed colored Petri net. An extended timed colored Petri net ETCPN ′ =
(P ′, T ′, F ′, Esc′, T ′, λ′,Σ′, γ′, µ′, ε′, TS′,D′, δ′) is a subnet of ETCPN , if, and only if,
the following properties are satisfied:

• P ′ ⊆ P ,
• T ′ ⊆ T ,
• F ′ = {(n1, n2)|(n1, n2) ∈ F ∧ (n1, n2) ∈ P ′ × T ′ ∪ T ′ × P ′},
• Esc′ ⊆ Esc,
• T ′ ⊆ T ,
• λ′ = λ|T ′,
• Σ′ ⊆ Σ,
• γ′ = γ|P ′,
• µ′ = µ|T ′,
• ε′ = ε|F ′,
• TS′ ⊆ TS,
• D′ ⊆ D, and
• δ′ = δ|T ′.

An input border node n ∈ P ′∪T ′ is a node for which the set {(x, n)|(x, n) ∈ F ∧ (x, n) 6∈
F ′} is not empty. Analogously, an output border node n ∈ P ′ ∪ T ′ is a node for which
the set {(n, x)|(n, x) ∈ F ∧ (n, x) 6∈ F ′} is not empty. Generally speaking, a subnet is a
part of a Petri net. We say that a subnet S of a net N with a set of transitions T ′ is the
induced subnet w.r.t. T ′ if S contains all places that are connect to transitions t ∈ T ′ in
N . For induced subnets, output and input border nodes are always places, if we assume
that each transition has at least one input place and one output place. This assumption
holds for the mapping proposed in the previous chapter.

For the following explanations we consider the timed Petri net depicted in figure 4.1a.
Choosing an arbitrary way of partitioning this net, we might receive the three spatial

4.1. A LOGICAL PROCESS FOR CONSERVATIVE DISTRIBUTED DES 49

regions shown in figure 4.1b, where each transition, along with the places it is connected
to, is put into a single region. In this example, a partition is the induced subnet for the
transition it contains. Please note: W.r.t. this example a specific place of the original net
is an output border place in multiple partitions, e.g. place p3; in contrast, a place serves
as input border place for at most one partition. For the remainder, we only consider
partitionings where these properties hold, for reasons given in section 4.2.

(a) (b)

Figure 4.1.: (a) A simple timed Petri net, and (b) an arbitrary partitioning of this net

As outlined in section 2.5, the partitions are simulated by logical processes. Each logical
process embodies a Petri net region (PNR), i.e. one of the partitions, a simulation engine
(SE), and a communication interface (CI).

SE holds the clock, representing the local virtual time (LVT) of SE, an event list (EVL),
which is a temporally ordered list of future events that are scheduled for simulation,
and a log which is the history of event occurrences. An event e = 〈et, t〉 consists of
a parameterized event type et and a time stamp t which is the local time at which e

occurs. With respect to the concepts represented by our chosen class of Petri nets, we
distinguish the following event types.

Start Firing (SF(tr, tokens)) An event 〈SF(tr, tokens), t〉 denotes the start of the fir-
ing of a transition tr at LVT t, thereby removing the configured tokens from its
input places. The occurrence of such event leads to the scheduling of an event
〈EF(tr, tokens), t + fd(tr)〉. Remember that fd(tr) denotes the firing delay of
tr. Further, as tokens are removed from the transition’s input places, it must
be checked if other transitions have been disabled and, therefore, their respective
SF-events have to be descheduled.

End Firing (EF(tr, intokens)) An event 〈EF(tr, intokens), t〉 denotes the completion of
the firing of a transition tr at LVT t, thereby producing the respective tokens at

50 CHAPTER 4. SIMULATION ENGINE AND MODEL PARTITIONING

the output places of tr. For the computation of the output tokens, the set intokens
is considered, representing the tokens that have been consumed by the firing of tr.
To each produced token the current LVT, i.e. t, is assigned. As new tokens are
available after the event is processed, it must be checked if transitions are newly
enabled, i.e., if respective SF-events need to be scheduled. Further, as tokens might
be produced at escape places, we need to check for potential deschedulings of SF-
and EF-events. If an EF-event is devalidated, the respective transitions firing is
aborted immediately, and the respective resource tokens consumed by this firing
are put back to their original places.

Work Begin (WB(hrt)) An event 〈WB(hrt), t〉 denotes the begin of the working time
of the human resource represented by the token hrt, thereby making the token
available for enabling transitions. By the firing of an WB-event the next WB-event
for hrt is scheduled. Further, it is checked if token hrt newly enables transitions.
If so, the respective SF-events are scheduled.

As the event types show, we decided for a two-step transition firing. The events require
checks for newly enabled and disabled transitions. It is, however, not necessary to
evaluate all transitions of the respective PNR. Instead, a transition tr can only disable
transitions that are in structural conflict to tr, or by producing a token at an escape
place. On the other hand, tr can only enable succeeding transitions, i.e. transitions for
which the output places of tr serve as input places. For a deeper understanding of the
enabling test, we refer the interested reader to [14].

The events in EVL are ordered according to a two-level priority scheme. First, they
are naturally ordered by their occurrence times. Second, if two SF -events have the
same occurrence time, we consider the time stamps attached to the tokens. In this
case, the event carrying tokens with earlier time stamps is preferred. This is a natural
first-come, first-served prioritization of process instances. However, this prioritization
scheme has different implications. First, all processes are equally important, i.e., their
is no mechanism for considering external, i.e. user-defined, priorities. Second, human
resources are not choosing tasks from a list of possible tasks, but are assigned to the
first occurring task. Third, there is no concept for interrupting a transition firing due
to the end of the human resource’s working time, i.e., human resources are assumed to
work overtime.

The communication interface is responsible for receiving messages from and sending
them to other logical processes. Therefore, CI holds an input queue (IQ) for each LP
from which messages will be received during simulation. Obviously, the number of input

4.1. A LOGICAL PROCESS FOR CONSERVATIVE DISTRIBUTED DES 51

queues is determined by the partitioning of the Petri net. Analogously, an output buffer
(OB) is assigned to each output border place of PNR. The queues and buffers serve as
interfaces to the communication channels connecting the logical processes.

There are two types of messages that are sent between the LPs. A token-message
m = 〈tok, p, t〉 carries a token tok to the destination place p; t is the message’s time
stamp representing the LVT of the sending LP. A null-message m = 〈0, p, t〉 sent from
LP1 to LP2 is a promise that LP1 will sent no token-messages for the destination place
p until virtual time t. The need for token-messages is obvious. Null-messages provide a
mechanism for deadlock avoidance and performance improvement within the conserva-
tive synchronization protocol, as will be explained later. Within the input queues, the
messages are sorted according to their time stamp.

Figure 4.2 depicts a conceptual view on the logical process handling partition P3 in
figure 4.1b. We add some example events and messages for a better illustration of IQs,
OB, EVL, and the log.

Figure 4.2.: Conceptual view on the LP for partition P3 in figure 4.1b

Based on the LP’s architecture, algorithm 3 describes the procedure for the embodied
simulation engine. It is a refinement of the basic DES algorithm in section 2.5. In the
beginning (step 1), the initial events are scheduled. These events are SF-events for the
transitions that are enabled in the initial marking of the handled Petri net region and

52 CHAPTER 4. SIMULATION ENGINE AND MODEL PARTITIONING

Algorithm 3: Conservative DDES algorithm
LVT ←− 0, EVL ←− {} ;
scheduleInitialEvents (EVL) ;1

while LVT ≤ endTime do
while ¬ isEmpty (EVL) ∧ time (head (EVL)) = LVT do2

fire (dequeue (EVL)) ;
end
updateInputQueues (false) ;3

IQmin ←− queueWithMinimumTimestamp (), minTime ←−time (IQmin);4

evlTime ←− time (head (EVL));
if (minTime ≤ evlTime ∨ isEmpty (EVL)) ∧ tokenMessage (IQmin) then5

mtoken ←− dequeue (IQmin) ;
advance (LVT, time (mtoken)) ;
add (place (mtoken), token (mtoken)) ;
scheduleNewEvents (EVL) ;
descheduleDevalidatedEvents (EVL) ;

end
else if minTime > evlTime ∧¬ isEmpty (EVL) then6

fire (dequeue (EVL)) ;
else

sendLookahead () ;7

updateInputQueues (true) ;8

end

end
sendLookahead;9

analyzeLog;10

WB-events for all human resource tokens. After the initialization, the simulation loop is
started. First (step 2), all events that are scheduled for occurring at the current LVT are
executed. Afterwards (step 3), the input queues are updated in a non-blocking manner
- indicated by the parameter false -, i.e. all messages that are available at the input
channels are inserted into the respective input queue. In step 4, IQmin represents the
input queue holding the message with the minimum time stamp w.r.t. all IQs. If this
message is a token message and its time stamp is smaller or equal to the time stamp
of the first event in EVL, the message is processed (step 5). As outlined before, the
reception of a token may lead to newly enabled transitions or, if the receiving place is an

4.1. A LOGICAL PROCESS FOR CONSERVATIVE DISTRIBUTED DES 53

escape place, to the inhibition of already enabled or event firing transitions. Therefore,
the respective events need to be scheduled or descheduled. Otherwise, if the occurrence
time of the event is smaller than the time stamp of the message, the event is fired along
with its potential scheduling and descheduling of other events (step 6). In case the event
puts a token to an output border place, a token message is put into the respective output
buffer and sent out. If neither a token message is available to be processed nor an event
can be fired, i.e., EVL is empty or it is still possible to receive messages with a time
stamp smaller than the occurrence time of the first event in EVL, the simulation engine
initiates a blocked waiting (step 8). This waiting is terminated by the reception of the
next message on any input channel. Before the engine falls into the blocked waiting, it
sends out lookahead -information, i.e. null-messages, for all output border places (step 7).

Sending the lookahead, la(p), for a place p, is sending a null-message with a time stamp
that is ahead of the LP’s current LVT. Thereby, the recipient of the message is informed
that no messages for place p will be sent by the respective LP that have a time stamp
smaller than la(p). The lookahead depends on the local virtual time, the marking of the
Petri net region, and the currently scheduled events.

Consider the snapshot of the logical process in figure 4.2. Disregarding the messages
in the output buffers, the LP has to fall into a blocked waiting, since the next event
in EV L has a time stamp of 6 whereas there are only two null-messages having time
stamps 4 and 5 in the input queues. In this situation, it is possible that token-messages
with time stamps smaller than 6 will be received. Therefore, the lookahead for places
p1 and p2 is computed. Due to the net structure, we find la(p1) = la(p2). We assume
transition t3 to have a constant firing delay of 3 time units. The earliest possible time
instant for which t3 gets enabled is 4, i.e., if a token message carrying this time stamp
will be inserted into IQ2. A consecutive firing of t3 would produce tokens at p1 and p2

at a local virtual time of 7. However, there is an EF-event for t3 scheduled to occur at
LVT 6, which is naturally before 7. Therefore, la(p1) = la(p2) = 6.

After LVT has reached the end time of the simulation, the lookaheads are sent again
(step 9), in order to notify the other LPs that there will be no more messages that need
to be considered for the current simulation run. Finally, the log is analyzed for creating
meaningful results for the user (step 10).

As already mentioned, null-messages, and thereby the lookahead-computation, provide
a tool for avoiding deadlocks between multiple LPs. Such deadlocks occur, if there
are cyclic waiting dependencies between the logical processes. Using null-messages the
LPs can incrementally improve their lookahead and thereby become finally unblocked.

54 CHAPTER 4. SIMULATION ENGINE AND MODEL PARTITIONING

However, to enable such incremental improvement the partitioning algorithm must put
a special focus on τ -transitions, if cyclic dependencies are present. We address this
problem in the next sections. For detailed information on avoiding deadlocks using
null-messages, see, e.g., [34, 16].

4.2. Model Parallelism and Partitioning Rules

A reasonable model partitioning is always a trade-off between multiple issues. On the
one hand, its main goal is the exploitation of the inherent model parallelism. On the
other hand, we find the ratio between communication and local computation for the
logical processes to be a key factor. Sending messages is relatively expensive w.r.t. to
the consumed time, compared to local computation. A third issue are the multiple
architectures and settings on which the simulation is executed. Obviously, when the
simulation is physically distributed on multiple machines the reduction of communication
overhead becomes even more important. Summarizing this trade-off, there exists no
general-purpose solution to the problem of model partitioning.

However, for the partitioning of timed Petri nets, guidelines have been proposed, describ-
ing steps towards a reasonable partitioning, i.e., a partitioning that achieves a better
performance than all, or at least most, of the other partitionings and the single-engine
execution.

From the perspective of timed Petri nets, the inherent model parallelism is given by the
structure of the net (structural parallelism), on the one side, and its marking and time
constraints (semantic parallelism), on the other side. Generally speaking we can state
that, two transitions t1 and t2 of a Petri net are inherently parallel, if there exists a
reachable marking, such that both are enabled within this marking, i.e. t1 and t2 are
not mutually exclusive.

Consider the example net in figure 4.3. From the structure of the net, we derive that
transitions t3 and t4 will be concurrently enabled after the firing of transition τ1. This is
the only structural parallelism in figure 4.3. Approaches for finding structural parallelism
already at the base of the process models are, e.g., the refined process structure tree
([61]), or behavioral profiles ([63]). We further identify semantic parallelism. After a
firing of t1, transition t2 is newly enabled, while t1 is enabled again. This is, t1 and t2

are semantically parallel. As we see for this small example, fully exploiting the model
parallelism will usually lead to many small partitions for which a high communication

4.2. MODEL PARALLELISM AND PARTITIONING RULES 55

Figure 4.3.: A Petri net with structural and semantic parallelism

overhead is predictable during simulation.

In the literature discussing distributed discrete event simulation of Petri nets, we find
versatile approaches to the partitioning problem. In [51], Thomas and Zahorjan create
a partition for each place and each transition, targeting the maximum exploitation of
model parallelism. However, the amount of messages that will be sent in order to simulate
the original net is tremendous and will thereby prevent a performance improvement.
In [2], Ammar and Deng allow partitioning by arbitrary arc cutting. Although this
allows for forming bigger partitions, thoughtless arc cutting might create high message
overhead, e.g. for conflict resolution. In [37], the partitioning of Nicol and Roy claims
that structurally conflicting transitions must go to a single partition along with all their
input places. Thereby, the need for distributed conflict resolution is eliminated.

Analyzing the versatile approaches, Chiola and Ferscha developed rules for Petri net
partitioning in [10]. These rules use the minimum partitioning of the Petri net as a
starting point. The idea of the minimum partitioning is to have each transition along
with all its conflicting transitions in a single partition, thereby making all structural
conflicts local to the logical processes. Further, all places that are connected to the
respective set of transitions are added to the partition. This approach is analogous to
the claim of Nicol an Roy mentioned above. A Petri net can be uniquely cut into a set of
minimum partitions ([10]). Obviously, the simplest case of a minimum partition contains
only a single transition and its input and output places. Please note: The partitioning in
figure 4.1b is minimum. Algorithm 4 along with the procedure FillPartition sketches
the creation of a minimum partitioning.

The minimum partitioning of our running example from the previous chapter (cf. figures
3.4 and 3.8) is shown in figure 4.4. Of course, the minimum partitioning could be
used for the distributed simulation since the partitions are valid inputs to the logical
processes described in the last section. Further, the model parallelism is exploited to a
high extent. However, the partitions are generally small, leading to high message traffic
while spending only a vanishingly small amount of time for local computation.

Chiola and Ferscha propose the following rules for merging partitions into bigger ones:

56 CHAPTER 4. SIMULATION ENGINE AND MODEL PARTITIONING

Algorithm 4: Minimum Partitioning of a Petri net
Input : N ←− (P, T, F) is a Petri net
Output: A set of Petri nets, which represent the partitions of N

handled ←− {};
partitions ←− {};
for t ∈ T do

if t 6∈ handled then
Pi ←− {}, Ti ←− {t}, Fi ←− {} ;
Ni ←− (Pi, Ti, Fi) ; // create a new partition

FillPartition (Ni, t, N) ;
handled ∪Ti ;
partitions ∪Ni;

end

end
return partitions

Procedure FillPartition(Ni, t, N)

Input : Ni ←− (Pi, Ti, Fi) and N ←− (P, T, F) are Petri nets, with Pi ⊆ P, Ti ⊆ T,
and Fi ⊆ F

Input : t is a transition with t ∈ Ti

Pi ∪ •[N]t ∪ t•[N] ;
// Collect transitions that are in structural conflict with t

Tconf ←−
(⋃

p∈•[N]t p
•[N]
)
− Ti ;

for tconf ∈ Tconf do
Ti ∪ tconf ;
FillPartition (Ni, tconf , N) ;

end

Rule 1 Mutually exclusive transitions go into one LP, since they bear no potential par-
allelism.

Rule 2 Partitions leading to high message traffic intensity are merged to save message
transfer time.

Rule 3 For transitions having a single input place, the input place can serve as input
border place for the partition, since the enabling test is trivial for these transitions.

4.2. MODEL PARALLELISM AND PARTITIONING RULES 57

(a) P1 (b) P2 (c) P3

(d) P4 (e) P5 (f) P6

(g) P7

Figure 4.4.: Minimum partitioning of our running example in figure 3.8

Rule 4 Endogenous simulation speed should be balanced, i.e. the probability of blocked
waiting is reduced by balanced virtual time increments in all logical processes.

The rules have been slightly adapted to fit the wording and the use case of this thesis.
The benefits of rules 2 and 3 are obvious. Rule 4 requires a lot of investigations in order
to be automatically applied during partitioning. Rule 1 basically states that we should
avoid to put model parallelism into a single partition.

Projecting rule 1 onto the distribution of our business process simulation, we make the
following observation. Since we receive a single Petri net from our transformations,
all process instances will be running within the same net. Thereby, transitions that
are mutual exclusive w.r.t. a single process instance, e.g. US and SP in our running
example, get simultaneously enabled if we consider multiple process instances within the
same net. Therefore, if we assume a sufficient amount of available resources within the

58 CHAPTER 4. SIMULATION ENGINE AND MODEL PARTITIONING

net, we will hardly find any transitions that are really mutual exclusive.

Before proposing another partitioning rule we define the concept of the partition graph
for a set of of partitions.
Definition 18 (Partition Graph) The partition graph for a set Part of Petri net
partitions is a tuple PG = (Part, A), where A ⊆ Part × Part is a multi-set of directed
arcs. For two partitions P1, P2 ∈ Part and each place pb, such that pb serves as an output
border place in P1 and as an input border place in P2, (P1, P2) ∈ A.

The arc-degree, AD(p), for a partition p is the number of arcs connected to p in PG.
In addition, we define the partition-degree, PD(p), as the number of partitions p is con-
nected to in PG. Figure 4.5 illustrates the partition graph for the minimum partitioning
of figure 4.4. For example, AD(P5) = 5 with PD(P5) = 2, and AD(P1) = PD(P1) = 1.
As we can see for P7 and P5, there can be multiple arcs having the same direction
between two nodes. We can further restrict AD to incoming (ADIN) and outgoing
(ADOUT) arcs. Analogously, we can restrict PD to PDIN and PDOUT . The arc de-
gree and partition degree can be used as a metric for inferring on the communication
overhead.

Figure 4.5.: Partition Graph for figure 4.4

In addition, the partition graph visualizes cyclic dependencies between the partitions
and, thereby, between the logical processes that would run the simulation. As mentioned
before, such dependencies might lead to a deadlock using a conservative synchronization
protocol. Therefore, we state the following rule:

Rule 5 For partitions that form a cycle within the partition graph, it has to be ensured
that they can constantly improve on their lookahead, i.e. a potential deadlock due
to cyclic wait dependencies is avoided.

A necessary condition for such partitions is that for all firing sequences t0, t1, . . . tj , where

4.3. BOTTOM-UP PARTITIONING 59

t0 removes a token from an input border place and tj produces a token at an output
border place, at least one of the ti, 0 ≤ i ≤ j, has a non-zero firing delay.

Within the following two sections, we seek to provide concrete algorithms for construct-
ing reasonable model partitionings. Despite knowing that there is no general-purpose
solution, the algorithms are assumed to provide a starting point for the automated model
partitioning for distributed business process simulation. The algorithms are not set to
return a fixed number of partitions. If this should be necessary, e.g. by computational
resource constraints, some of the created partitions might be further merged, where rules
1-5 apply analogously.

4.3. Bottom-Up Partitioning

As outlined above, sending and receiving messages has a key influence on the performance
of the distributed simulation. First, it takes much more time than local computation.
Second, due to the conservative protocol, a logical process blocks its computation until it
has received all token-messages or the respective null-messages, that have to be processed
before processing the next local event. One factor on the likeliness of blocked waiting
is the number of input queues of the logical process, i.e. PDIN (p) for the partition p

controlled by the LP. Obviously, PDIN (p) is affected by ADIN (p).

Therefore, our first partitioning approach tries to keep ANIN and PDIN small. This is,
we seek to have only one input border place for most of our partitions, which is similar
to Rule 3 in the previous section. We further seek to avoid small regions which would
lead to a bad ratio of message sendings and local computation (Rule 2).

Algorithm 6 describes the approach, using the following functions:

filter(set, block) Filters the collection set according to the constraints specified by the
given block. It returns a collection containing all the elements for which the given
block evaluates to true. set is not changed by this function.

merge(p1, p2) Merges partition p2 into partition p1, removes p2 from the set of parti-
tions, and updates the partition graph. The function returns the new p1.

forceMerge(set1, set2) Merges every member of set1 to a partition of set2, where set1 ⊆
set2. If two elements of set2 are equally good for merging an element of set1, a
non-deterministic choice is made.

60 CHAPTER 4. SIMULATION ENGINE AND MODEL PARTITIONING

succPartition, precPartition(p, PG) Returns the set of succeeding (preceding) parti-
tions for partition p in the partition graph PG = (P,A). A succeeding (preceding)
partition r for p is a partition for which (p, r) ∈ A ((r, p) ∈ A). If the set has only
one element, the single element is assumed to be returned.

transitions(p) Returns the set of transitions in partition p.

Algorithm 6: Bottom-Up Partitioning
Input : PN is an extended timed colored Petri net
Output: partitions is a set of partitions of PN

partitions ←− minimumPartitioning (PN) ;
pg ←− partitionGraphFrom (partitions) ;
sequences ←− filter (partitions, {p→ ADOUT (p, pg) = ADIN (p, pg) = 1}) ;1

maximize (sequences) ;2

foreach s ∈ sequences do3

p←− succPartition (s, pg) ;
if ADIN (p) = 1 then

s = merge (s, p) ;
sequences −{s} ;

end
// remove small cycles

foreach p ∈ partitions do4

if PDIN (p) = PDOUT (p) = 1 then
if succPartition (p, pg) = precPartition (p, pg) then

p = merge (p, succPartition (p)) ;
end
groupInstanceCreation (partitions) ;5

small ←− filter (partitions, {p→ |transitions (p)| ≤ 2}) ;
forceMerge (small,partitions) ;6

shortSequences ←− filter (sequences, {s→ | transitions (p)| ≤ 5}) ;
forceMerge (shortSequences,partitions) ;7

The algorithm starts with with the minimum partitioning. In a first step, we filter the
set of minimum partitions such that only the sequences remain, i.e. partitions having
an input arc degree and output arc degree of 1. In step 2, we try to merge these small
sequences into longer sequences. For each of the resulting maximized sequences s we
check its succeeding partition in PG (step 3). Let p denote the succeeding partition of
s. If ADIN (p) = 1, we merge p to s. Thereby, the size of the input border of s remains

4.3. BOTTOM-UP PARTITIONING 61

constant while its output border may grow. The size of the output border, however, has
no direct impact on the performance of the respective logical process.

Projecting these three steps onto the minimum partitioning of figure 4.4, we observe no
change in the partitions, simply because there are no sequences we could maximize.

Until this point in the algorithm, we assume the created partitions to be rather small,
which is obviously supported by our running example. This is a reasonable assumption,
since there are, in general, no large sequences, i.e. sequences of more than 15 transitions,
that do not have any dependencies to human or non-human resources. Therefore, further
steps are required to create partitions of reasonable size, such that an appropriate ratio
between local computation and message exchange is achieved.

Continuing the partitioning with step 4, we look for the simplest cyclic dependency we
can observe within the partition graph. If there is a partition p having ADIN (p) ≥ 1,
ADOUT (p) ≥ 1, and PD(p) = 1, p is merged into the single partition it is related to,
in order to remove the cyclic dependency from PG. Thereby, we partly address Rule
5. Again, this step does not affect our running example, i.e. we still have the minimum
partitions.

Step 5 is the only step in the algorithm where we deliberately merge partitions that
are actually unrelated. The partitions containing transitions, for which an instance
creation distribution is defined are grouped into a single partition. As we have, so
far, maximized only sequences, it is assured that the created partition has no input
border place. Therefore, the respective logical process will never fall into a blocked
waiting, i.e., all process instances are created without waiting. There are, of course,
other opportunities for handling these instance creating partitions. On the one hand,
for maximally exploiting the model parallelism, we could assign each of the partitions to
a single logical process. This is reasonable if there are enough computational resources
available. On the other hand, integrating the instance creation into partitions that have
a non-empty input border bears the potential of slowing down the simulation, because
the instance creation might be delayed by blocked waiting times. The consolidation of
instance creating partitions is the first step affecting our running example, resulting in
the partition in figure 4.6a.

The concluding steps 6 and 7 of algorithm 6 seek to eliminate small partitions. The
problem with having small partitions has already been outlined above. In step 6 we force
all partitions containing only two or less transitions to be merged into bigger partitions.
Of course, we explicitly exclude the instance creating partitions. For our example, this

62 CHAPTER 4. SIMULATION ENGINE AND MODEL PARTITIONING

(a) P1 + P4 (b) P2 + P3 + P5 + P6 + P7

Figure 4.6.: Bottom-Up partitioning result for the example of figure 3.8

leads to the integration of the partitions P2, P3, P5, and P6 into P7 (see figure 4.6b).
This step may have an unpredictable impact on the resulting communication interfaces.
However, we decide to merge these small partitions in favor of reducing message sendings.
For bigger examples, step 7 would further force short sequences, i.e. sequences consisting
of only five or less transitions, to be merged into other partitions. Please note: This
integration of sequences will not increase the size of the communication interface of
the logical process, but may reduce it. These concluding lines add a potential non-
determinism to the algorithm that may lead to different partitionings in different runs,
since the function forceMerge may choose arbitrarily between multiple equally good
opportunities for merging a partition. However, as the opportunities are considered to
be equally good, the effect of this arbitrary choice can be neglected.

Summarizing this approach, we step-wise construct partitions of reasonable size with a
small value for PDIN by adding and combining small partitions. Therefore, we call this
approach a bottom-up partitioning.

4.4. Top-Down Partitioning

As discussed earlier, the determination of mutual exclusive net parts within the generated
net is not trivial. However, with respect to a single process instance, all parts are mutual
exclusive except for those that are explicitly branched by a transition. These branches
arise if we have modeled concurrency within the original process models.

Based on this idea of mutual exclusiveness w.r.t. a single instance, we propose a second

4.4. TOP-DOWN PARTITIONING 63

partitioning algorithm. Its basic approach is to partition the generated net on the basis
of the original processes. Thereby, parts belonging to the same process go into the same
partition.

Algorithm 7 describes the approach. In addition to the definitions in the previous section,
we define the following functions:

procRef(p) Returns the set of process references for partition p. Let T be the set of
partitions in p. Then, procRef(p) =

⋃
ti∈T process ref(ti).

enrichOrMerge(set1, set2) This function is similar to forceMerge in the previous sec-
tion. For each partition p1 ∈ set1 the function looks for enriching the partition by
moving sequential parts of partitions p2, p3, . . . ∈ set2 to p1. If such enrichment is
not possible, it forces p1 to be merged to another partition.

Algorithm 7: Top-Down Partitioning
Input : PN is an extended timed colored Petri net
Output: partitions is a set of partitions of PN

partitions ←− minimumPartitioning (PN) ;
foreach p1 ∈ partitions do

if |procRef (p1)| = 1 then
process ←−filter (partitions, {p2 → p2 6= p1 ∧ procRef(p2) = procRef(p1)}) ;1

foreach p2 ∈ process do merge (p1, p2);
end

end
pg ←− partitionGraphFrom(partitions) ;
smallAndCommunicative ←− filter(partitions, {p→ |transitions(p)| < AD(p)}) ;2

enrichOrMerge (smallAndCommunicative,partitions) ;3

zeroLA ←− filter(partitions, {p→ hasZeroLookaheadSequence(p)}) ;
enrichOrMerge (zeroLA,partitions) ;4

Once more, we start with the minimum partitioning of the net in order to have conflicting
transitions in a single partition. In step 1, partitions that have a single process refer-
ence are merged with other partitions having the same process reference. The, thereby,
created process partitions contain those parts of the processes that are not competing
for resources with other processes. Due to this independence, these partitions can be
considered to be completely concurrent to each other.

Applying the first step to our running example, we receive the partitions depicted in

64 CHAPTER 4. SIMULATION ENGINE AND MODEL PARTITIONING

figure 4.7. As the figure illustrates, we receive an imbalance on the partition size. While
the process partitions are rather big, the other partitions holding the resource conflicts
are probably small w.r.t. the number of transitions, e.g. partition P5 in figure 4.7b.

(a) P1 + P2 + P3 (b) P5

(c) P4 + P6 + P7

Figure 4.7.: Partitions after step 1 of algorithm 7

Another phenomenon concerning these resource partitions is their comparably big com-
munication interface. For example, partition P5 has only two transitions but an arc
degree of 5. Thinking about the simulation of this partition, we can state that every
transition firing will lead to the sending of a message, i.e., we observe a bad ratio between
local computation and message sending. In step 2, we filter such partitions from the set
of partitions for addressing this problem in step 3, following partitioning rule 2.

As outlined for the function enrichOrMerge, we seek to enhance these partitions or, if
such enhancement is not possible, fully merge them into another partition. For enriching
a partition p, we try to find transition sequences within the process partitions, that could
be moved to p. For our example partition P5, there are no such sequences. Therefore,
we seek to merge P5 to one of the remaining two partitions. Regarding the partition
graph in figure 4.8, we have three arcs between P5 and the partition P4 + P6 + P7,
and only two arcs between P5 and P1 +P2 +P3. Since the former opportunity reduces
the number of border places, and thereby the size of the communication interfaces, we
create a partition P4 + P5 + P6 + P7.

In step 4 of algorithm 7, we address partitioning rule 5. We filter partitions, for which

4.4. TOP-DOWN PARTITIONING 65

Figure 4.8.: Partition graph after step 1

firing sequences can be identified that do not improve the lookahead. We handle the
resulting set of partitions in the same way as the small partitions in step 3. For our
running example this step does not affect the partitioning. As a result, we receive the
two partitions shown in figure 4.9.

Obviously, the results and the algorithm are completely different to the bottom-up par-
titioning in the previous section. In this second approach, we more rely on the original
processes and try to balance the size of partitions afterwards. We, therefore, call this
approach a top-down partitioning.

(a) P1 + P2 + P3

(b) P4 + P5 + P6 + P7

Figure 4.9.: Top-down partitioning result for the example of figure 3.8

66 CHAPTER 4. SIMULATION ENGINE AND MODEL PARTITIONING

There is a possible variation of the top-down approach, such that, analogous to the
bottom-up partitioning, the instantiating transitions are grouped into a single partition.
For our running example, this would create a third partition which is equal to the
partition in figure 4.6a.

A second variation targets dangling parts. Imagine, transition CP in figure 4.9b would
not be connected to the place Inspector. As this would be a very small part that is not
connected to the rest of the partition, it is moved to another partition, where it can be
connected to the net structure. By moving such danglers, the ratio between message
sendings and local computation is intended to be improved.

Further, we could improve the implementation of enrichOrMerge, such that it does not
only consider pure sequences of transitions, but also considers parts that would reduce
the communication interface of the partition under consideration. This is, however,
subject to future work.

67

5. Prototypical Realization

Before we evaluate our approaches in the next chapter, this chapter describes the concrete
architecture of our prototype. It is based on the conceptual blueprint described in section
3.1.

The simulation engine and the partitioning strategies are integrated into an already
existing modeling framework. This Java-based framework is used for prototypical im-
plementations at the inubit AG1. Further, the framework provides a simple web-server
and web-based modeling and configuration interfaces.

A major task of our prototype is the distribution of the simulation onto multiple com-
putational resources, which might be different threads running on the same machine or
even different machines. On the one hand, although concurrent programming in Java2

is supported, it requires rather high effort. On the other hand, there are languages that
have been proven to be well-suited for working with multiple threads of execution, like
Erlang3 ([4]). Fortunately, there is a language that combines the concepts of Erlang
with the Java Virtual Machine (JVM). Scala4 ([39]) is a language integrating object-
oriented and functional programming, running on the JVM. Scala, following Erlang,
provides a light-weight process abstraction, called actors ([23]). Actors communicate
asynchronously using message-passing. The performance of Scala, also in the context
of concurrent programming, is documented by several commercial projects5. Scala ab-
stracts from the concrete distribution of threads to computational units and also provides
means for physically distributed execution.

The seamless integration with Java and the high-performance framework for concurrent
programming make Scala an ideal solution in our setting. We further benefit from the
functional programming style, especially, when handling collections of objects. Figure 5.1

1http://www.inubit.com
2http://java.com
3http://www.erlang.org
4http://www.scala-lang.org
5For a list of companies using scala, please see: http://www.scala-lang.org/node/1658

http://www.inubit.com
http://java.com
http://www.erlang.org
http://www.scala-lang.org
http://www.scala-lang.org/node/1658

68 CHAPTER 5. PROTOTYPICAL REALIZATION

shows the separation of concerns between Java and Scala in our prototype. The modeling
and simulation configuration aspect is handled via Java; the nets, their partitioning, and
the simulation are handled in Scala.

Figure 5.1.: Integration into the existing modeling framework

As we can see from the figure, the prototype does not employ extended timed colored
Petri nets, but a concept called business process net (BP net) that is similar to ETCPN.
As there is no general implementation of ETCPN required, BP nets have been introduced
in order to facilitate, e.g., the enabling test of transitions and the mapping of simulation
scenarios. However, BP nets are still formally based on extended timed colored Petri
nets. Figure 5.2 depicts the classes that form the BP net implementation, as a UML
class diagram ([21]).

Following the definition of Petri nets, a BP net consists of places and transitions. The
flow relation is represented by the inputs and outputs fields. An instance of the class
DelayedTransition holds a function representing its firing delay. If such delay is not
necessary, this function constantly returns 0, which is the default configuration. Except
for OutputBorderPlace, the different implementations of the Place-interface represent
the different color types of the places. As there is no class for representing arcs, the class
EscapePlace is introduced as a special ProcessPlace to be handled differently during the
enabling test. The class OutputBorderPlace, is a wrapper that connects an arbitrary
place with an output buffer. Similarly, the different actions and guard conditions of
transitions are incorporated in the different refinements of the class DelayedTransition.
The general case is the class BPTransition that represents tasks, gateways and most of
the events. The class provides means for specifying guards on the random value and

69

Figure 5.2.: UML class diagram: BP nets

human resources. All other transition classes have telling names that indicate their
purpose.

BPNetRegion is a class representing partitions of a BPNet. A vital mechanism of col-
ored Petri nets are arc expressions and bindings. In the prototype they are primarily
handled by the different transitions and place implementations. Nevertheless, for non-
human resource places a binding can specify the number of tokens that is consumed by
a respective transition firing.

The concept of actors provided by Scala perfectly fits the use case of logical processes.
Therefore, as we can see in figure 5.3, a logical process is a special actor. Since there
are multiple opportunities for synchronization, the class LogicalProcess is further sub-
classed. As we only implement one synchronization protocol, CoservativeLP is the
only sub-class in our case. However, the architecture can be easily extended by further
protocols. The SimulationInitiator creates the respective number of LPs and assigns
their BPNetRegion. If an LP terminates it reports its termination to the initiator.

By changing the superclass of LogicalProcess from scala.actors.Actor to scala.actors.
remote.RemoteActor, we can easily switch to a physically distributed simulation using
multiple machines.

For partitioning an instance of class BPNet, the four partitioning strategies can be used.
The class SingleRegionPartitioning refers to the case where the whole net goes into a

70 CHAPTER 5. PROTOTYPICAL REALIZATION

Figure 5.3.: UML class diagram: Logical process and partitioning

single partition, i.e., actually no real partitioning takes place. MinimumPartitioning,
TopDownPartitioning, and BottomUpPartitioning provide implementations of the algo-
rithms presented in the previous chapter. By implementing the Partitioning-interface,
new partitioning can easily be added to our prototype.

From a user perspective, the prototype provides web interfaces for configuring the sce-
narios and displaying the results. Figure 5.4 shows the scenario configuration screen,
where process models, human resource models, and non-human resources can be added
to or removed from the scenario.

Figure 5.5 shows the modeling interface, where a task configuration dialog is displayed.
We can see the elements for specifying the execution time and non-human resource con-
sumption and production. Further, there is a field for configuring the case participation
of that task. The Pools and Lanes of the process model are linked to elements of a
human resource model (cf. requirement MR2).

Figure 5.6 depicts an excerpt of the result visualization (cf. functional requirement FR4).
Some tasks are colored to denote that a kind of bottleneck has been detected. In this
example, for the framed task almost all instances have endured a delay, i.e., they had to
wait before the task execution could start.

71

Figure 5.4.: Screenshot: Scenario configuration screen

Figure 5.5.: Screenshot: The modeling interface with a task configuration dialog

72 CHAPTER 5. PROTOTYPICAL REALIZATION

Figure 5.6.: Screenshot: An excerpt of the simulation results

73

6. Evaluation

This chapter presents experimental results for the previously developed algorithms. Sec-
tion 6.1 describes two use cases for our simulation. Using these examples and the im-
plemented prototype, statistics on the approaches are presented in section 6.2. Section
6.3 analyzes the gathered results and draws conclusions.

6.1. Example Scenarios

Within this section, we describe two examples we regard as suitable for applying our
simulation approach. First, section 6.1.1 presents an example scenario considering the
intra-enterprise processes of a software company. Second, section 6.1.2 depicts a simple
supply chain example involving multiple enterprises.

6.1.1. Example 1: TurboSoft Inc.

The first example completely follows the motivation of this thesis. It describes a fictive
software company called TurboSoft Inc. TurboSoft runs 16 processes. For focusing
on the evaluation of the example in this chapter, we moved the process models and
organizational chart to appendix A. The processes are based on the processes of a real
German software company. Thus, the models are depicted in German language.

The Lanes within the process models indicate the performing roles, that can be found
within the organizational chart. As we can see, the role PS is the most used resource
within the processes. Further, the processes do not explicitly use any non-human re-
source.

Regarding the sub-process relation, we can identify four groups of processes. First,
the biggest group contains processes Project realization, Business modeling, Capture
Requirements, Design, Implementation, Deployment, Test Software, and Project Com-
pletion (figures A.12, A.1, A.13, A.4, A.7, A.2, A.16, and A.3). Second, another group

74 CHAPTER 6. EVALUATION

consists of the processes Incident Management, Problem Management, Handling Soft-
ware Errors, Document Software Error and Licensing (figures A.8, A.10, A.6, A.5, and
A.9). Please note: Although the problem and incident management process are initially
unrelated, both processes, in the end, rely on process Document Software Error. Third,
processes Resolve Software Error (figure A.14) and Test Functionality (figure A.15) form
a group. Last, the process Procurement (figure A.11) is independent of all other pro-
cesses. This holds even when we consider the human resource relations, as this process
is the only one where the role Team Assistenz performs tasks. If we consider further re-
source relations, the second and the third group are related by using the human resource
SD. The complete organizational chart is depicted in figure A.17.

The only processes for which instance creation intervals and functions are specified are
Project Realization, Problem Management, Incident Management, Procurement, and Re-
solve Software Error. Instances of all other processes are created by the invocation of
the respective sub-processes.

Please note: The processes Problem Management and Incident Management contain
cyclic structures that may lead to the repetitive execution of multiple tasks.

6.1.2. Example 2: Product Supply Chain

The example described within this section has been adapted from the work of Ferscha and
Chiola in [15]. Their original process is modeled using timed Petri nets and has been
transformed into BPMN process models. The scenario depicts a simple supply chain
involving one producer P, three wholesalers W1 - W3 and nine retailers A - J. Three
retailers interact with one wholesaler; all wholesalers interact with the single producer.
The flow of orders and shipments between the companies is sketched in figure 6.1.

A CB D FE G JH

W1 W2 W3

P

order
shipment

Figure 6.1.: Flow of orders and shipments within the supply chain

6.1. EXAMPLE SCENARIOS 75

Each of the eleven enterprises follows a similar process and has its own human and
non-human resources participating in this process. The process of wholesaler W1 is
shown in figure 6.2. On the one hand, incoming orders of the retailers are processed
by the incoming order management department. If the wholesaler needs to order things
from the producer, a respective order is emitted by the department for outgoing orders.
Meanwhile, a worker in the department for outgoing shipments, collects the ordered
products and prepares them for deliverance. Before the shipment gets delivered to one
of the three producers, an inspector checks it.

On the other hand, incoming shipments from the producer are unpacked by a worker of
the department for incoming shipments and afterwards inspected by an inspector. What
can be implicitly taken from this explanation, but is not explicitly shown in the model,
is a dependency between incoming shipments, emitted orders, and outgoing shipments,
i.e. products that are not in the warehouse need to be ordered and the shipment has to
be delayed until the respective products have been received.

Obviously, this example describes a setting where the interaction of enterprises is sim-

W
ho

le
sa

le
r

Unpack
shipment

Add to
system

Analyze
orderings

Inspect
shipment

Pack
order

Prepare
shipment

Check
shipment

Receive
shipment

Receive
order

Deliver
to A

Deliver
to B

Deliver
to C

W
or

ke
r I

N
W

or
ke

r O
U

T
In

sp
ec

to
r

W
or

ke
r O

O
M

W
or

ke
r I

O
M

Send to
producer

Figure 6.2.: The wholesaler process

76 CHAPTER 6. EVALUATION

ulated, which is, actually, out of scope of this thesis. It is, however, taken into account
to represent an example of decoupled processes. Such decoupled processes could also be
observed within a single business, if the degree of resource sharing is low.

6.2. Statistics

The examples are evaluated on an Intel XEON processor, having four physical CPU cores
with 2.93 GHz and 64-bit architecture. By enabling hyper-threading, there are virtually
eight CPUs available. The machine employs 12 GB of main memory and uses openSUSE
11.2 as an operating system. The prototype runs with Java version 6 (1.6.0 24) and Scala
version 2.9.1.

For assuring the comparability of the results, the conservative logical process is also used
for running the single-engine simulation. Naturally, there will be no message sending,
since the logical process will not have any input queues or output buffers.

Analyzing the setting of example 1, we find a high degree of resource relation. Espe-
cially the human resource PS is used in several processes. In an initial configuration
approximately 1000 process instances are created in a simulation time frame of four
weeks.

Running the simulation, we receive the results depicted in figure 6.3a. For the mini-
mum and the bottom-up partitioning the simulation does not terminate, since the cyclic
dependencies prevent the important incremental lookahead improvement. However, the
simulation using the top-down partitioning approach terminates, but increases the time
for simulation by a factor of three. Figure 6.3d depicts the partition graph for this
example. The number next to an arc denotes the multiplicity of that arc.

In a second step, the number of instances is step-wise increased. We still simulate 4
weeks, but the instance creation parameters have been adapted. Thereby, there are more
concurrent process instances. The simulation results are depicted in figures 6.3b and 6.3c.
Surprisingly, for the case of figure 6.3b, the top-down partitioning performs slightly
better than the single-engine approach. However, this improvement is not constantly
growing, i.e., for the case of figure 6.3c, both approaches perform almost equally good.

For the evaluation of the bottom-up approach for example 1, we remove the cyclic
dependencies from the processes Problem Management (figure A.10) and Incident Man-
agement (figure A.8). Further, the process Handling Software Errors is removed from

6.2. STATISTICS 77

Simulated time: 4 weeks; ≈ 1000 instances

Partitioning avg. time avg. wait time max. wait time

None 4.595 - -
Minimum ∞ - -
Bottom-Up ∞ - -
Top-Down 13.967 6.003 11.974

(a)

Simulated time: 4 weeks; ≈ 2000 instances

Partitioning avg. time avg. wait time max. wait time

None 18.005 - -
Top-Down 17.158 5.250 14.706

(b)

Simulated time: 4 weeks; ≈ 4000 instances

Partitioning avg. time avg. wait time max. wait time

None 37.713 - -
Top-Down 37.269 11.588 36.805

(c)

(d)

Figure 6.3.: (a)-(c) Simulation results for Example 1, and (d) the partition graph for the
top-down partitioning

78 CHAPTER 6. EVALUATION

the scenario. Again the number of concurrent process instances is increased step-wise.
The results are shown in figure 6.4. For the initial setting the single-engine approach
still shows the best performance. For the bottom-up approach the grouping of instance
creating transitions (gi) is slightly favorable. The top-down partitioning performs better
than the bottom-up algorithms but is still slower than the single-engine simulation.

Simulated time: 4 weeks; ≈ 1000 instances

Partitioning avg. time avg. wait time max. wait time

None 4.572 - -
Minimum ∞ - -
Bottom-Up 8.903 2.642 6.128
Bottom-Up (gi) 8.553 1.948 6.532
Top-Down 6.334 1.738 4.750

(a)

Simulated time: 4 weeks; ≈ 2000 instances

Partitioning avg. time avg. wait time max. wait time

None 10.083 - -
Bottom-Up 10.177 4.082 9.696
Top-Down 14.244 3.800 13.346

(b)

Simulated time: 4 weeks; ≈ 4000 instances

Partitioning avg. time avg. wait time max. wait time

None 15.083 - -
Bottom-Up 25.403 6.844 22.758
Top-Down 15.481 5.230 14.884

(c)

Figure 6.4.: Results for Example 1 - Facilitated version

However, increasing the number of parallel instances reveals the same trend as for the
original example. The simulation using the top-down partitioning and the single-engine
approach perform equally good. The bottom-up approach performs much weaker.

The partition graphs and the visualization of the simulation execution times of the

6.2. STATISTICS 79

facilitated example are shown in figure 6.5.

(a) (b)

(c)

Figure 6.5.: Results for the facilitated example 1: (a) the partition graph for the top-
down partitioning, (b) the partition graph for the bottom-up partitioning,
and (c) the simulation execution times.

Analyzing the setting of example 2, we observe a low degree of resource relation between
the different companies. The example is configured such that each of the nine retailers
emits orders every 20 minutes of simulated time. Each process instances lasts about 45
minutes of simulated time. Thus, there are many concurrent instances.

The partition graphs for the partitionings of example 2 are depicted in figure 6.6. For the

80 CHAPTER 6. EVALUATION

top-down approach (figure 6.6a), each company is represented by a single partition. For
the bottom-up approach (figure 6.6b) we observe the non-determinism for the mapping
of retailers, which are sometimes divided into two partitions, e.g. P1 and P2, and in
other cases into three partitions, e.g. P11, P12, and P13.

(a) top-down partitioning (TD) (b) bottom-up partitioning (BU)

Figure 6.6.: Partitioning results for example 2

The simulation results are shown in figure 6.7. For all partitionings we achieve a better
performance than for the single-engine simulation. Interestingly, the minimum partition-
ing is better than the single-engine case, and also even slightly better than the top-down
partitioning. The best performance is achieved by using the bottom-up partitioning
without grouping the instance creation.

6.3. RESULT ANALYSIS 81

Simulated time: 4 weeks; ≈ 23000 instances

Partitioning avg. time avg. wait time max. wait time

None 29.360 - -
Minimum 11.491 4.968 10.716
Bottom-Up 9.776 0.632 3.163
Bottom-Up (gi) 11.647 3.268 5.487
Top-Down 12.133 6.105 8.824

(a)

Figure 6.7.: Results for Example 2

6.3. Result Analysis

The evaluation statistics provide versatile results. The evaluation of the second example
suggests the benefit and potential of distributing the simulation. For processes that
are loosely coupled and a high degree of concurrent instances there is a huge gain in
the performance. This setting favors the bottom-up partitioning as it creates smaller
partitions than the top-down approach. Further, the minimum partitioning shows good
performance, since there are so many concurrent instances.

However, the original use-case of this thesis are scenarios similar to the first example. For

82 CHAPTER 6. EVALUATION

this example, we observe that besides the structural issues of the processes the number
of parallel process instances affects the performance of the distributed simulation. The
results for the original version of the example show that cyclic structures are problematic
and are not sufficiently covered by the proposed algorithms. Further, even in the simpli-
fied case, the bottom-up partitioning fails to improve the performance of the simulation.
We assume the high degree of resource relation to be the inhibitory factor. This is also
represented in the partition graphs where we observe a rather high arc degree, which is
also due to the resource relations.

Taking these results as an initial basis, it seems questionable if the automated distribu-
tion of business process simulation is generally beneficial. At least, there is no simple
straight-forward solution, that performs better than the single-engine approach in most
of the settings. In addition, the performance results for the single-engine simulations
of our examples are quiet good. Further, the single-engine approach saves time that is
spent for partitioning in the distributed case.

The field of distributed simulation is, however, too large to be completely addressed
by this thesis. As the next chapter shows, there are several opportunities for future
investigations that contribute to the issue of this thesis.

83

7. Summary and Outlook

This thesis has addressed two aspects of business process simulation. The simulation
of business processes is a vital part of business process management and provides a
powerful tool for the analysis and improvement of business processes.

For simulating the interplay of multiple processes along with their participating re-
sources, this thesis has proposed a formal model for simulation scenarios. In order to get
simulated, the three components of the simulation model, i.e. process models, human
resources, and non-human resources, are integrated into a single model that serves as
an input for the simulation engine. As a formalism, extended timed colored Petri nets
(ETCPN) have been chosen. This thesis has described a mapping of simulation scenar-
ios onto ETCPN. The mapping extends mappings of BPMN process models onto timed
colored Petri nets.

For achieving a performance improvement, the distribution of the simulation has been
investigated. To enable such distribution, this thesis has proposed two concrete algo-
rithms for partitioning the generated Petri nets. The algorithms have been evaluated
using a prototypical implementation that has been created in company with this thesis.

The evaluation results have different implications. First, for processes with a low de-
gree of resource relation, distribution is an appropriate mechanism for accelerating the
simulation. Second, if the degree of resource relation is rather high, the presented par-
titioning strategies tend to impair the simulation performance. Third, cyclic structures
within the process models must be handled with high care during partitioning.

Considering only the results of this thesis, it seems questionable if the distribution of
business process simulation is able to achieve the performance improvement observed in
other domains. However, as this thesis is only able to show an excerpt, there are several
opportunities for further investigations that contribute to answering this question.

As the focus of this thesis is put on partitioning, the prototype implements the simplest
case of a synchronization protocol. There are, nevertheless, many further approaches
for assuring a causally correct distributed simulation. Especially hybrid and adaptive

84 CHAPTER 7. SUMMARY AND OUTLOOK

synchronization protocols should be evaluated. Accompanying the investigations on
synchronization, the partitioning algorithms must be further refined. As the evaluation
results show, cyclic structures are problematic for the proposed algorithms. In addi-
tion, the partitioning strategies should be made aware of timing and instance creation
constraints. Another result from the evaluation is the varying performance of the pro-
posed algorithms for different examples. Affecting measures are, e.g., the number of
created process instances and the structural and behavioral relations between the pro-
cesses. Therefore, the properties of simulation scenarios should be analyzed, such that
recommendations on partitioning strategies are possible.

This thesis has only considered the distributed simulation using multiple threads on a
single machine. A physical distribution onto multiple machines is even more challenging,
since the costs for message sending increase. This may influence all aforementioned
issues.

Regarding simulation modeling, the working time is the only attribute of human re-
sources supported within this thesis. However, human behavior is a critical factor for
appropriate simulation results. Therefore, the model and the mapping should be ex-
tended by human skills and the general human work behavior.

85

Bibliography

[1] ISO International Standard 8601:2004 : Data elements and interchange formats -
Information interchange - Representation of dates and times, 2004.

[2] Hany H. Ammar and Su Deng. Time warp simulation of stochastic petri nets. In
PNPM, pages 186–195, 1991.

[3] Ravi Anupindi, Sunil Chopra, Sudhakar D. Deshmukh, Jan A. Van Mieghem, and
Eitan Zemel. Managing Business Process Flows: Principles of Operations Manage-
ment. Prentice Hall International, 2nd edition, December 2007.

[4] Joe Armstrong, Robert Virding, Claes Wikström, and Mike Williams. Concurrent
Programming in ERLANG. Prentice Hall, 1996.

[5] Tim Baines, Stephen Mason, Peer-Olaf Siebers, and John Ladbrook. Humans:
the missing link in manufacturing simulation? Simulation Modelling Practice and
Theory, 12(7-8):515–526, 2004.

[6] R. E. Bryant. A switch-level model and simulator for mos digital systems. IEEE
Trans. Comput., 33:160–177, February 1984.

[7] K. M. Chandy and J. Misra. Distributed simulation: A case study in design and ver-
ification of distributed programs. IEEE Trans. Softw. Eng., 5:440–452, September
1979.

[8] K. Mani Chandy, Jayadev Misra, and Laura M. Haas. Distributed deadlock detec-
tion. ACM Trans. Comput. Syst., 1:144–156, May 1983.

[9] Giovanni Chiola and Alois Ferscha. Distributed Simulation of Petri Nets. IEEE
Parallel Distrib. Technol., 1:33–50, August 1993.

[10] Giovanni Chiola and Alois Ferscha. Distributed Simulation of Timed Petri Nets:
Exploiting the Net Structure to Obtain Efficiency. In Proceedings of the 14th In-
ternational Conference on Application and Theory of Petri Nets, pages 146–165,
London, UK, 1993. Springer-Verlag.

86 Bibliography

[11] Gero Decker and Mathias Weske. Local enforceability in interaction petri nets. In
Proceedings of the 5th international conference on Business process management,
BPM’07, pages 305–319, Berlin, Heidelberg, 2007. Springer-Verlag.

[12] P. M. Dickens and Jr. P. F. Reynolds. Srads with local rollback. Technical report,
University of Virginia, Charlottesville, VA, USA, 1990.

[13] Remco M. Dijkman, Marlon Dumas, and Chun Ouyang. Semantics and Analysis of
Business Process Models in BPMN. Inf. Softw. Technol., 50:1281–1294, November
2008.

[14] Sami Evangelista and Jean francois Pradat-peyre. An efficient algorithm for the
enabling test of colored petri nets. In University of Arhus, pages 137–156, 2004.

[15] A. Ferscha and G. Chiola. Self-adaptive logical processes: the probabilistic dis-
tributed simulation protocol. In In Proc. of the 27 th Annual Simulation Sympo-
sium, pages 78–88. IEEE Computer Society Press, 1994.

[16] Alois Ferscha. Parallel and distributed simulation of discrete event systems. In
Handbook of Parallel and Distributed Computing, pages 1003–1041, 1995.

[17] Alois Ferscha. Optimistic distributed execution of business process models. In
Proceedings of the Thirty-First Annual Hawaii International Conference on System
Sciences-Volume 7 - Volume 7, HICSS ’98, pages 723–, Washington, DC, USA,
1998. IEEE Computer Society.

[18] Alois Ferscha and Satish K. Tripathi. Parallel and Distributed Simulation of Discrete
Event Systems. Technical report, University of Maryland at College Park, College
Park, MD, USA, 1994.

[19] Richard M. Fujimoto. Parallel and Distributed Simulation Systems, volume 1 of
Wiley Series On Parallel And Distributed Computing. John Wiley & Sons, January
2000.

[20] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns.
Addison-Wesley, Boston, MA, 1995.

[21] Object Management Group. Omg unified modeling language (omg uml), super-
structure, version 2.3. Technical report, Object Management Group (OMG), May
2010.

[22] Object Management Group. Business process model and notation (BPMN) version
2.0. Technical report, Object Management Group (OMG), January 2011.

Bibliography 87

[23] Philipp Haller and Martin Odersky. Scala actors: Unifying thread-based and event-
based programming. Theor. Comput. Sci., 410:202–220, February 2009.

[24] Vlatka Hlupic and Stewart Robinson. Business Process Modelling and Analysis
Using Discrete-Event Simulation. In Proceedings of the 30th conference on Win-
ter simulation, WSC ’98, pages 1363–1370, Los Alamitos, CA, USA, 1998. IEEE
Computer Society Press.

[25] David Jefferson and Henry Sowizral. Fast concurrent simulation using the time
warp mechanism, part 1 local control. Washington : United States Air Force, 1982.

[26] Kurt Jensen. An introduction to the theoretical aspects of coloured petri nets. In
A Decade of Concurrency, Reflections and Perspectives, REX School/Symposium,
pages 230–272, London, UK, 1994. Springer-Verlag.

[27] G. Keller, M. Nüttgens, and A. W. Scheer. Semantische Prozeßmodellierung auf
der Grundlage Ereignisgesteuerter Prozeßketten (EPK). Technical Report 89, Uni-
versität des Saarlandes, Germany, Saarbrücken, Germany, January 1992.

[28] Andreas Knpfel, Bernhard Grne, and Peter Tabeling. Fundamental Modeling Con-
cepts: Effective Communications of IT-Systems. John Wiley & Sons, 2006.

[29] Stefan Krumnow, Matthias Weidlich, and Rüdiger Molle. Architecture blueprint for
a business process simulation engine. In Stefan Klink, Agnes Koschmider, Marco
von Mevius, and Andreas Oberweis, editors, EMISA, volume 172 of LNI, pages
9–23. GI, 2010.

[30] M. H. Jansen-Vullers and M. Netjes. Business Process Simulation - A Tool Survey.
In In Workshop and Tutorial on Practical Use of Coloured Petri Nets and the CPN,
2006.

[31] Matteo Magnani and Danilo Montesi. Bpmn: how much does it cost? an incremen-
tal approach. In Proceedings of the 5th international conference on Business process
management, BPM’07, pages 80–87, Berlin, Heidelberg, 2007. Springer-Verlag.

[32] M. Ajmone Marsan. Stochastic petri nets: An elementary introduction. In In
Advances in Petri Nets, pages 1–29. Springer, 1989.

[33] Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile processes.
Information and Computation, 100:1–40, September 1992.

[34] Jayadev Misra. Distributed Discrete-Event Simulation. ACM Comput. Surv., 18:39–
65, March 1986.

88 Bibliography

[35] Michael Zur Muehlen. Resource Modeling in Workflow Applications. In Proceedings
of the 1999 Workflow Management Conference (WFM99, pages 137–153, 1999.

[36] T. Murata. Petri nets: Properties, analysis and applications. Proceedings of the
IEEE, 77(4):541–580, April 1989.

[37] David M. Nicol and Subhas Roy. Parallel simulation of timed petri-nets. In Pro-
ceedings of the 23rd conference on Winter simulation, WSC ’91, pages 574–583,
Washington, DC, USA, 1991. IEEE Computer Society.

[38] Alexandre Nketsa and Nabil Ben Khalifa. Timed petri nets and prediction to im-
prove the chandy-misra conservative-distributed simulation. Appl. Math. Comput.,
120:235–254, May 2001.

[39] Martin Odersky, Stphane Micheloud, Nikolay Mihaylov, Michel Schinz, Erik Sten-
man, Matthias Zenger, and et al. An overview of the scala programming language.
Technical report, 2004.

[40] David Parmenter. Key Performance Indicators: Developing, Implementing, and
Using Winning KPIs. Wiley, January 2007.

[41] C. A. Petri. Communication with Automata (in German: Kommunikation mit
Automaten). PhD thesis, Institut für instrumentelle Mathematik, Bonn, 1962.

[42] Frank Puhlmann. Why do we actually need the Pi-Calculus for Business Process
Management. In 9th International Conference on Business Information Systems
(BIS 2006), 2006.

[43] Frank Puhlmann and Mathias Weske. Using the pi-calculus for formalizing workflow
patterns. In Wil van der Aalst, Boualem Benatallah, Fabio Casati, and Francisco
Curbera, editors, Business Process Management, volume 3649 of Lecture Notes in
Computer Science, pages 153–168. Springer Berlin / Heidelberg, 2005.

[44] Jorgen Randers, editor. Elements of the System Dynamics Method. MIT Press,
Cambridge, MA, USA, 1980.

[45] N. Russell, Arthur Hofstede, D. Edmond, and Wil V. Aalst. Workflow Resource
Patterns. Found at http://www.workflowpatterns.com, 2004.

[46] Nick Russell, Arthur H. M. Ter Hofstede, and Nataliya Mulyar. Workflow con-
trolflow patterns: A revised view. Technical report, BPMcenter.org, 2006.

[47] Thomas J. Schriber and Daniel T. Brunner. Inside Discrete-Event Simulation Soft-

Bibliography 89

ware: How It Works And Why It Matters. In Proceedings of the 30th conference
on Winter simulation, WSC ’98, pages 77–86, Los Alamitos, CA, USA, 1998. IEEE
Computer Society Press.

[48] Robert E. Shannon. Systems simulation: The Art and Science. Prentice Hall, June
1975.

[49] Robert E. Shannon. Introduction to the art and science of simulation. In Proceedings
of the 30th conference on Winter simulation, WSC ’98, pages 7–14, Los Alamitos,
CA, USA, 1998. IEEE Computer Society Press.

[50] Jeff S. Steinman. Breathing time warp. In Proceedings of the seventh workshop on
Parallel and distributed simulation, PADS ’93, pages 109–118, New York, NY, USA,
1993. ACM.

[51] Gregory S. Thomas and John Zahorjan. Parallel simulation of performance petri
nets: extending the domain of parallel simulation. In Proceedings of the 23rd con-
ference on Winter simulation, WSC ’91, pages 564–573, Washington, DC, USA,
1991. IEEE Computer Society.

[52] Kerim Tumay. Business Process Simulation. In Proceedings of the 27th conference
on Winter simulation, WSC ’95, pages 55–60, Washington, DC, USA, 1995. IEEE
Computer Society.

[53] W. M. P. van der Aalst. Timed coloured Petri nets and their application to logistics.
PhD thesis, Eindhoven University of Technology, 1992.

[54] W. M. P. van der Aalst and A. H. M. ter Hofstede. Yawl: yet another workflow
language. Information Systems, 30(4):245–275, 2005.

[55] Wil van der Aalst. Making Work Flow: On the Application of Petri Nets to Business
Process Management. In Javier Esparza and Charles Lakos, editors, Application
and Theory of Petri Nets 2002, volume 2360 of Lecture Notes in Computer Science,
pages 1–22. Springer Berlin / Heidelberg, 2002.

[56] Wil M. P. van der Aalst. Making work flow: On the application of petri nets
to business process management. In Javier Esparza and Charles Lakos, editors,
ICATPN, volume 2360 of Lecture Notes in Computer Science, pages 1–22. Springer,
2002.

[57] Wil M. P. van der Aalst. Business process simulation revisited. In Enterprise
and Organizational Modeling and Simulation - 6th International Workshop , EO-

90 Bibliography

MAS 2010, held at CAiSE 2010, Hammamet, Tunisia, June 7-8, 2010. Selected
Papers, volume 63 of Lecture Notes in Business Information Processing, pages 1–
14. Springer, 2010.

[58] Wil M. P. van der Aalst, Arthur H. M. Ter Hofstede, and Mathias Weske. Business
process management: A survey. In Proceedings of the 2003 International Conference
on Business Process Management, BPM’03, pages 1–12. Springer-Verlag, 2003.

[59] Wil M.P. van der Aalst, Mathias Weske, and Dolf Grnbauer. Case handling: A new
paradigm for business process support. Data and Knowledge Engineering, 53:2005,
2005.

[60] W.M.P. van der Aalst, J. Nakatumba, A. Rozinat, and N. Russell. Business process
simulation: How to get it right. In International Handbook on Business Process
Management. Springer-Verlag, 2010.

[61] Jussi Vanhatalo, Hagen Völzer, and Jana Koehler. The refined process structure
tree. In Proceedings of the 6th International Conference on Business Process Man-
agement, BPM ’08, pages 100–115, Berlin, Heidelberg, 2008. Springer-Verlag.

[62] Jianrui Wang and Richard A. Wysk. A pi-calculus formalism for discrete event
simulation. In Proceedings of the 40th Conference on Winter Simulation, WSC ’08,
pages 703–711. Winter Simulation Conference, 2008.

[63] Mathias Weidlich, Jan Mendling, and Mathias Weske. Computation of behavioral
profiles of process models. Technical report, Hasso Plattner Insititute at the Uni-
versity of Potsdam, 2009.

[64] Mathias Weske. Business Process Management: Concepts, Languages, Architec-
tures. Springer, 2007.

[65] Jr. K. Preston White and Ricki G. Ingalls. Introduction to simulation. In Winter
Simulation Conference, WSC ’09, pages 12–23. Winter Simulation Conference, 2009.

[66] Behrouz Zarei. A partial taxonomic review of parallel discrete-event simulation
research. From: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.
1.119.4047&rep=rep1&type=pdf.

[67] Wlodzimierz M. Zuberek. M-timed petri nets, priorities, preemptions, and perfor-
mance evaluation of petri nets. In Grzegorz Rozenberg, editor, Applications and
Theory in Petri Nets, volume 222 of Lecture Notes in Computer Science, pages
478–498. Springer, 1985.

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.119.4047&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.119.4047&rep=rep1&type=pdf

91

A. TurboSoft Inc. Processes

Figure A.1.: Process: Business Modeling

92 APPENDIX A. TURBOSOFT INC. PROCESSES

Figure A.2.: Process: Deployment

Figure A.3.: Process: Project completion

Figure A.4.: Process: Design

Figure A.5.: Process: Document software error

93

Figure A.6.: Process: Handling software errors

Figure A.7.: Process: Implementation

Figure A.8.: Process: Incident management

Figure A.9.: Process: Licensing

94 APPENDIX A. TURBOSOFT INC. PROCESSES

Figure A.10.: Process: Problem management

Figure A.11.: Process: Procurement

Figure A.12.: Process: Project Realization

Figure A.13.: Process: Capture Requirement

Figure A.14.: Process: Resolve software error

95

Figure A.15.: Process: Test functionality

Figure A.16.: Process: Test software

Figure A.17.: Organizational Structure: TurboSoft Inc.

96

List of Algorithms

1. Basic DES algorithm . 20
2. Mapping of Human Resources . 44
3. Conservative DDES algorithm . 52
4. Minimum Partitioning of a Petri net . 56
5. FillPartition(Ni, t, N) . 56
6. Bottom-Up Partitioning . 60
7. Top-Down Partitioning . 63

97

Ich erkläre hiermit, dass ich die vorliegende Arbeit selbstständig verfasst und keine
anderen als die angegebenen Quellen und Hilfsmittel verwendet habe.

Potsdam, November, 2011

	Introduction
	Questions and Requirements
	Contribution
	Research contribution
	Prototypical Implementation

	Structure of the Thesis

	Related Work And Preliminaries
	Related Work
	Business Process Management
	Simulation in the Context of BPM
	Petri nets
	Distributed Discrete Event Simulation

	Simulation Scenarios and Their Formal Representation
	Conceptual Architecture
	Simulation Modeling
	Models and Their Configuration
	Formal Model for Simulation Scenarios

	Mapping Simulation Scenarios to Petri Nets
	Mapping Time
	Mapping Simulation Business Process Models
	Mapping Human and Non-Human Resources
	Remarks and Additional Mappings

	Simulation Engine and Model Partitioning
	A Logical Process for Conservative Distributed DES
	Model Parallelism and Partitioning Rules
	Bottom-Up Partitioning
	Top-Down Partitioning

	Prototypical Realization
	Evaluation
	Example Scenarios
	Example 1: TurboSoft Inc.
	Example 2: Product Supply Chain

	Statistics
	Result Analysis

	Summary and Outlook
	Bibliography
	TurboSoft Inc. Processes

