
Implementation Framework for Production Case
Management: Modeling and Execution

Andreas Meyer, Nico Herzberg, and Mathias Weske
Business Process Technology Group

Hasso Plattner Institute at the University of Potsdam
14482 Potsdam, Germany

{Andreas.Meyer,Nico.Herzberg,Mathias.Weske}@hpi.uni-potsdam.de

Frank Puhlmann
Methodology & Solution Architecture
Bosch Software Innovations GmbH

10785 Berlin, Germany
Frank.Puhlmann@bosch-si.com

Abstract—Nowadays, business process modeling and system-
supported executions have become a commodity in many com-
panies. Most systems, however, focus on modeling and execution
of static, pre-defined processes with standards like the Business
Process Model and Notation (BPMN). While these static process
executions are applicable to a number of traditional processes
like purchase orderings or back orderings, they fail at represent-
ing variant-rich, flexible processes. One solution for supporting
flexible processes is Adaptive Case Management (ACM), where
a case manager creates an individual execution path for each
process instance, such as a doctor defining a clinical pathway for
a specific patient. We found out, however, that both approaches
are too strict, either supporting static process definitions with
only a limited set of pre-defined flexibility or allowing maximum
flexibility but requiring a highly skilled knowledge worker. To
overcome this problem, we propose an implementation frame-
work for Production Case Management (PCM) that combines
concepts from traditional process management and adaptive case
management. PCM combines the modeling of small, static process
fragments with the execution flexibility of ACM.

Keywords—Process Flexibility, Process Modeling, Process Exe-
cution, Methodology

I. INTRODUCTION

Production Case Management (PCM) is a paradigm to
organize and structure the daily work within organizations that
”is used when there is a certain amount of unpredictability in
the work, but still a large enough volume to make identifying
and codifying regular patterns” [1]. In contrast, traditional
business process models – like those expressed in BPMN [2] –
focus on mostly static process models [3]. If more execution
flexibility is required, Adaptive Case Management (ACM) is
a well-investigated solution [4], [5]. Comparing ACM and
PCM, the latter defines execution alternatives at design-time
from which are chosen during run-time while ACM proposes
next process steps based on historical information and given
guidelines and constraints but the process participant is free to
choose any task for execution.

While there exists a lot of related work on extending static
process models to specify variants at design-time, e.g., [6]–
[10], or to decide the execution at run-time, e.g., [11], [12],
none of them describes a generic implementation framework
for Production Case Management.

In this paper, we discuss an implementation framework for
Production Case Management by introducing the notion of
process components (fragments) derived out of notations like

BPMN that can be added, changed, or removed at run-time
to describe the run-time behavior of the process. Instead of
requiring a skilled knowledge worker to decide which fragment
should be executed, we rely on proven concepts from data-
and state modeling [13]–[16]. Furthermore, a crucial point in
introducing more flexibility to business users, especially at the
modeling side, is an easily understood modeling paradigm or
methodology.

The remainder of this paper is structured as follows. We
start with a real-world example in Section II that we will use
in subsequent sections to illustrate our framework. Section III
introduces the core terminology followed by the methodology
to model a process model as a set of process components
in Section IV and the corresponding execution semantics in
Section V. The application of the introduced concepts in a
customer project is discussed in Section VI. Finally, we discuss
related work in Section VII and Section VIII concludes the
paper.

II. EXAMPLE

In this section, we introduce an example inspired from
collaboration with a large tourism corporation. The example is
centered on a travel agency that receives a request for a quote.
The request is then processed and the corresponding offer is
finally sent to the customer.

As you can imagine, multiple ways of processing individual
customer requests exist which cannot be easily anticipated and
captured in one single process model. On the other hand, the
“usual” processes occur often and in many cases, they consist of
the same activities. Hence, the process has too much variability
which is hard to capture in traditional, static process models
(e.g., BPMN). At the same time, it is not that individual such
that Adaptive Case Management is a good representation, since
in most cases we have to deal with the same behavior in
different orders.

To this end, we propose to model and to execute the
processes of the travel agency using the Production Case
Management paradigm. We limit ourselves to a subset of the
complete process with a focus on introducing all concepts.

A. Simple Process Components of the Travel Agency

To get started, we model the different alternatives and
single steps in various process components, each being a single



Create 

offer

Change 

offer

Validate 

offer

(a) Process component p1 that takes care
that each created or changed offer is
validated.

Approve 

customer

(b) Process compo-
nent p2 that allows ap-
proval of customers.

Create 

offer

Enter 

offer re-

strictions

Validate 

offer

(c) Process component p3 that allows captur-
ing restrictions for new offers.

Cancel 

case

(d) Final process com-
ponent p4 that sends
the offer and ends the
process.

Send 

offer

(e) Process compo-
nent p5 that allows to
cancel the offer at any
time.

Fig. 1. Example process components of a travel agency.

process diagram that informally captures a specific procedure
of a process. Fig. 1 shows five process components representing
a reduced – but for the scope of this paper sufficient – view
on the scenario from the agency’s point of view.

Standard Procedures. Fig. 1a presents the standard proce-
dure for creating respectively changing an offer, depending on
whether iteration is required or a new request is placed before
the offer gets validated. The following mandatory validation
either approves the offer or requests an iteration prior approval.

Variant Procedures. In some cases, the creation of an offer
requires an additional step – the insertion of offer restrictions –
before the validation can take place. To retain small and easy
understandable process models, we model this option in a
separate component (see Fig. 1c). Please note that the shaded
activities with the same labels (e.g., Create offer) represent
exactly the same activities across all process components
(modeled via call activities in BPMN). Execution-wise, after
finishing Create offer, either the corresponding path in Fig. 1a
or the path in Fig. 1c is taken. The actual decision will be
computed at run-time.

Optional Procedures. If the customer, requesting the quote,
is new to the travel agency, she needs to be approved before
the approved offer can be sent. This additional step can take
place at different times during run-time, modeled in Fig. 1b.

Final Procedures. Furthermore, some process components
are able to end (terminate) the process. We make use of
the BPMN termination end event to represent this case. The
example process of the travel agency ends after the offer has
been sent, shown in Fig. 1d.

Global Procedures. Finally, we sometimes find activities
that should be always possible. In the case of the travel agency,
this is the cancellation of an offer if it is no longer required,
which can happen at any time. Nevertheless, the cancellation
must be documented and the process terminated. We show a
corresponding component in Fig. 1e.

Create 

offer

Change 

offer

Validate 

offer

Offer

[created]

Offer

[init]

Offer

[change

request]

Offer

[change

request]

Offer

[approved]

(a) Component p1.

Approve 

customer

Offer

[created]

Customer 

[approved]

Customer

[init]

Offer

[approved]

Customer

[dis-

approved]

(b) Component p2.

Create 

offer

Enter 

offer re-

strictions

Validate 

offer

Offer

[created]

Offer

[init]

Offer

[change

request]

Offer

[approved]

Offer

[extended]

(c) Component p3.

Cancel 

case

Offer

[canceled]

Offer

[*]

(d) Component p4.

Send 

offer

Offer

[sent]Offer

[approved]

Customer 

[approved]

(e) Component p5.

Fig. 2. Refined process components representing the request for quote business
process of a travel agency.

B. Refined Process Components of the Travel Agency

The process components shown in the previous subsection
represent an informal overview of the different procedures
required for an offer process in a travel agency. The corre-
sponding synchronization of the different components might
only be assumed by the context or be written underneath. While
this is usually a good start for capturing the different procedures
of a business process with the domain experts of a customer, we
need to add more refined constraints to the process components.

The refined constraints for synchronization requirements
are represented by adding BPMN data objects with state labels
as pre- and postconditions, shown in Fig. 2. The process
components act upon multiple data objects with each activity
being able to read (input) or write (output) them. A set of data
objects read from an activity is the precondition which must
hold to allow execution. A set of data objects written from an
activity are the postconditions expected to hold after activity
execution, i.e., the activity has to ensure that the data objects
exist in the requested states. An activity having multiple data
objects with the same label as input (or output) is required
to only read (or write) one of them as they are exclusive
and present multiple options for execution. Data objects with
different labels are conjunctive.

For illustration purposes, we introduce two different data
objects for the travel agency scenario. The first is the Offer
that is created and passed between the different activities and
components as transient data. The second one is a Customer
data object that relates to master data stored in a customer



Process Component

Control Flow Node

Activity Event Model Gateway

Link Activity

Data Node

Process Model

Synchronized

Object Life Cycle
Object Life Cycle

Data Class

Synchronization

Edge1

0..*
0..*

11..*

1
1

1 0..*

0..*
2

1

1

1

1

Production Case Management Scenario

1
1

0..*

Predefined Object Life Cycle

1 1

Terminate

Event Model

Fig. 3. Terminology overview of key modeling concepts as UML class diagram with the gray shaded classes representing the fundamental paradigm changes.

database.

C. Sample Execution of the Travel Agency’s process

Concluding the example section, we would like to discuss
how an agent of a travel agency might work with the
implemented process components.

Starting the process. An agent has the option to start all
process components that have a data object in the correct state
attached to it; if the object is only used within one process, then
this state is init. In case of the Customer, the correct state might
also be approved as she might have been approved in some
earlier execution. Regarding our example, if the customer is
new, these are components p1 and p3, both allowing to execute
the same activity Create offer.

Selecting different procedures. After Create offer has been
executed, either Validate offer from component p1 or Enter offer
restrictions from component p3 can be selected for execution.
Additionally, the agent can decide to cancel the case with
selecting the activity Cancel case from component p5. If she
decides to execute the activity Validate offer, one of the two
postconditions might set the state of the Offer to change request,
which in turn enables the execution of Change offer.

Approving a customer. During the time an Offer is in
state created, the agent has the option of executing the
activity Approve customer from process component p2, if
both preconditions are true (an Offer in state created AND a
Customer in init).

Sending the offer. Finally, when the Offer as well as the
Customer data objects are in the states approved, the agent can
send the offer to the customer via selecting the activity Send
offer for execution.

While this small example only discusses a small fraction of
the possible states a real business process can go through, the
introduced concepts scale to larger processes too, as discussed
in Section VI. More details about the execution semantics follow
in Section V. Next, we continue with the formal terminology
and the general approach.

III. TERMINOLOGY AND GENERAL APPROACH

To introduce an implementation framework for Production
Case Management, we re-interpret three fundamental paradigms
used within the business process management community:

(P1) Process components instead of diagrams. A process
instance is not correlated to a single process diagram but
to a set of process components collectively specifying the
corresponding business process model.
(P2) No visual end–to–end paths. The execution path taken
to achieve the business process goal is not visual but emerges
step-by-step during the actual execution.
(P3) Stepwise goal refinement. Referring to various process
components representing the process model and the execution
path which is gradually revealed by taking several process
components into account, a large variety of paths through
the process might be taken upon process instantiation, while
towards the end the number of paths becomes limited due to
the decisions taken.

Fig. 3 summarizes the key modeling concepts as UML class
diagram [17] and relates them to each other. Gray shaded
classes represent the aforementioned fundamental paradigm
changes. Additionally, we will explain further concepts that
are required for completeness reasons and which closely relate
to one of the key concepts. Each production case management
scenario is a business process represented by one process model
that consists of multiple process components, each describing
some part of the business process. A process component
contains multiple control flow nodes, which specify the partial
ordering of activities, one specific control flow node. This
relation is named control flow. Further control flow nodes
are event models and gateways where the latter is typed for
representing interleaving semantics (AND) and exclusive choice
(XOR) while the former may be of type plain start or plain
end event model. These modeling constructs comprise the
subset of BPMN [2] we support within the framework. Further,
we introduce a specific activity named link activity which
represents a set of activities occurring in different components
but performing the same work. We also introduce a specific
event model named terminate event model which indicates a
final process state from the control flow point of view. Secondly,
a component contains data nodes that specify the pre- and
postconditions of activities with respect to their enablement
and termination. Each data node references one data class that
describes the structure of data objects in terms of attributes
and possible states as enumeration. Data objects are instances
of data classes and are represented by data nodes. A data state
of an object describes a specific situation of interest that is
described by a unique set of attributes with each one holding a
value. Thus, the existence and non-existence of values identifies



the current state of a data object during process execution.

A data node may be read, written, or both (modified)
by an activity. We refer to the relation comprising all these
associations between data nodes and activities as data flow.
Thereby, each read specifies a precondition meaning that an
activity only gets enabled if all preconditions are met, while a
write specifies an expected result of the activity as postcondition,
i.e., the data object in a specific state. Conditions including
various data nodes combine the ones referencing the same data
class by disjunctions and the ones referencing different data
classes by conjunctions. Considering Fig. 2a, activity Validate
offer requests object Offer in state created for enablement and
expects the same object being either in state approved or in
state change request after activity termination. Each data class
references one object life cycle (OLC), a state transition diagram
that describes the behavior of data objects, i.e., the partial
ordering of states of the corresponding class. Within a process
model, multiple data classes with some inter-dependencies may
be utilized. For each such class, one OLC exists. The inter-
dependencies are represented by one synchronized object life
cycle [15], which uses directed synchronization edges consisting
of a source and a target to connect two states of different OLCs
and to show the dependency direction. Each process model
refers to one synchronized OLC.

Traditionally, the execution of a business process is rep-
resented by a process instance that is controlled by exactly
one process model. In contrast, in our approach, a process
instance is collectively controlled by a combination of process
components, which are collected while the process instance
runs. For the process model, a termination condition needs to
be specified to indicate the achievement of the business process
goal, i.e., the termination of one process instance. This condition
subsumes control flow and data flow requirements for which
at least one has to be defined. On the one hand, a termination
condition refers to a set of data objects in specific data states,
logically combined via conjunctions and disjunctions. On the
other hand, termination event models characterize situations
where the process model may terminate from the control flow
point of view. If these conditions hold true, the process model
is terminated.

Finally, a predefined object life cycle exists which defines
the superset of all data states of all data classes including their
allowed state transitions which are probably involved in the
production case management scenario and the synchronization
dependencies between these classes.

IV. METHODOLOGY

The framework consists of five steps as shown in Fig. 4:
(i) business process creation by modeling several process
components, (ii) transformation of data nodes used in the
components into OLCs, (iii) extending the OLCs with ad-
ditional states, state transitions, and synchronization edges, (iv)
transforming the extensions made to the OLCs into separate
components, and (v) executing the business process based on
all process components, the created ones as well as the derived
ones. Steps (i) to (iv) can be repeated multiple times to allow
iterative process component creation.

We assume that object life cycles may only be extended
as mentioned in step (iii). Deletions are not allowed. Adding

(iii) OLC 

Modeling 

(i) Process 

Component 

Modeling 

(ii) OLC 

Generation 

(iv) Process 

Component 

Generation 

(v) Execution 

Fig. 4. Methodology overview.

synchronizations needs special handling as these may contradict
to existing process components. In this paper, we restrict
the addition of synchronizations to those that align with the
current business process description. The predefined object
life cycle shall be used as guidance for the specification of
data manipulations (reads and writes) in process components.
All state transitions of the data object’s life cycle need to
be represented by the activities used for defining the process
components of the business process. These process components
need to be sound from the control flow point of view, i.e., each
process component instance that starts in the initial state may
eventually reach its final state if no other component interferes.
For the isolated execution of each component, reaching the
final state implies that no tokens are left in the net, and
each activity of the process component can contribute to
the process component instance [3]. Applying the concept of
weak conformance [18] to each component with respect to the
OLCs that correspond to the utilized data classes enables the
identification of inconsistencies if, for instance, the component
requires a data state transition for some object which is not
covered by the predefined OLC.

A. Process Component Modeling

We propose to first model the “happy paths” of the business
process to build a basic understanding and to set the scope. A
“happy path” describes the most likely process behavior ignoring
special cases, exception handling, and complicated decision
taking. Multiple process participants are involved in process
execution but they may have different views on the overall
process. Each participant models her own “happy path”, where
each is regarded during run-time (cf. Section V). Thereby, only
control flow is modeled in the first place before data objects
are associated to these activities as pre- and postconditions. To
ease process understanding, the activities executed in such a
“happy path” may not be modeled in a single process diagram
but in a set of process components executed in a specific
order. Further, such decomposition into components allows
their reuse to describe further paths through the process model
in later iterations. Consider p1 and p5 in Fig. 2 representing
the “happy path”, both could be modeled in a single process
diagram. As activity Send offer needs to be reused at the end
of p3, outsourcing it to p5 reduces the number of modeling
constructs.

In subsequent iterations, additional paths through the process



model are added in single process components. Adding optional
activities shall be done by copying the corresponding “happy
path” process component and changing this by adding the
respecting activities (cf. activity Enter offer restrictions in
Fig. 2c). In this case, some activities also get reused. We support
this by linked activities (gray shaded activities in the process
components), which ensure that multiple appearances of the
same activity are always treated the same way. From a technical
point of view, it is not necessary to label linked activities
similarly in different components. However, for stakeholders,
it is easier to get the connection between linked activities if
they are labeled equally. Alternative and parallel paths do not
have to be modeled in separate process components by using
the corresponding gateways. This also holds for loop behavior
in the business process.

An activity that is executable at multiple occasions should
be modeled in a single process component by adding the
alternative preconditions. If execution is allowed at all times,
the corresponding data object in this component gets assigned
an asterisk * as data state acting as a placeholder for each state
in the object’s life cycle. Referring to the process component
in Fig. 2d, the case can always be canceled independently from
the current state of object Offer. Furthermore, this capability
is often used for exception handling.

B. Object Life Cycle Generation and Modeling

Based on those process components, the relations between
the data nodes are analyzed for the process model by generating
single OLCs for each data class connected by synchronization
edges. For generation, we use the approach presented in [15].
This is necessary, as data nodes depend on each other, e.g.,
the offer can only be sent to a customer if she is approved.
Applying the OLC generation step to the process components
shown in Fig. 2 will produce the synchronized OLC shown in
Fig. 5 excluding the three dashed edges. In Fig. 5, a solid edge
represents a transition between two states of one OLC, a dotted
edge represents a dependency between two states of different
OLCs, and a dashed edge represents a newly added transition or
inter-dependency. This depends on whether the edge connects
two states of one OLC or two states between different OLCs.
The data objects used in this process model are Customer
(upper part) and Offer (lower part). This OLC describes the
state transitions (solid edges) and dependencies (dotted edges)
modeled in process components p1 to p5. Generation of
the synchronized OLC requires a satisfied preceding weak

init created approved sent

extended

init

disapproved

approved

change request

Offer

Customer

canceled

Fig. 5. Object life cycles generated from the process components in Fig. 2.

conformance check to ensure that only allowed state transitions
are used in the components.

The process components can be transformed into the
synchronized object life cycle at all times, allowing a view on
the data manipulations specified. We recommend utilizing this
view to (i) check whether changes that are supposed to be done
to data objects comply to the expectations and to (ii) add state
transitions determining object manipulations not yet modeled.
In Fig. 5, we added, for instance, transitions to change the state
of a Customer from approved to disapproved and vice versa
(dashed edges).

Maybe not all necessary state transitions are represented in
the OLC yet, because these dependencies are not modeled in the
process components. Thus, it is possible to add further states,
state transitions, and synchronization edges to the OLC; this
is expressed with dashed lines in Fig. 5. All of these changes
must be additions that do not contradict with the specifications
in the single process components. To ensure these consistencies,
several verifications could be applied that are not subject to
this paper. Satisfaction of the concept of weak conformance to
the utilized OLCs must be ensured again after additions.

As shown in Fig. 5 and according to the process components
described in Section II, a Customer may be in state init
when she is new to the travel agency or in states approved
or disapproved after customer approval in component p2.
Customer re-approval is not modeled in a process component
but is part of the business process. Therefore, the dashed
transitions between states disapproved and approved are added
to the OLC. Re-approval might also result in the same state
as before but for complexity reasons, we abstain from this
option in this paper. The first state of object Offer is init as
well. Afterwards, the offer gets created before it is approved
either directly or via state extended which refers to additional
offer restrictions (cf. Fig. 2c). After approval, the offer is sent
to the customer. Additionally, at all times, an offer might
also be canceled. As both data objects interact with each
other, some constraints apply to selected state transitions. A
customer can only be approved or disapproved respectively if
the corresponding offer is in state created or in state approved.
Due to the added synchronization edge, a customer may also
be approved if the offer is in state extended. Finally, an offer
can only be sent to an approved customer.

To start with modeling the OLCs and their inter-
dependencies is another option in this iterative approach,
especially if the process flow follows from objects instead
of activities. However, generating the process components will
result in a very fine-grained set of components, each having
only one activity that may need to be consolidated manually to
get meaningful ones. Nevertheless, the consolidation is optional
and the approach presented in this paper also works with such
minimal process components.

C. Process Component Generation

To incorporate the changes made to the synchronized
OLC, each added edge is transformed into a separate process
component, again using the transformation approach from [15]
applied to the single edges instead of adapting the existing
components based on the additions. After transforming the
adapted synchronized object life cycle back to the set of



A

Offer

[created]

Customer 

[approved]
Customer

[dis-

approved]

Offer

[approved]

(a) Component p6 that allows to
disapprove a customer.

B

Offer

[created]

Customer 

[approved]

Customer

[dis-

approved]

Offer

[extended]

Offer

[approved]

(b) Component p7 that allows to re-
approve a customer.

C

Offer

[extended]

Customer

[init]

Customer

[approved]

(c) Component p8 that al-
lows customer approvals.

Fig. 6. Generated process components.

process components, the newly created components are assigned
meaningful labels instead of placeholders as in Fig. 6.

For both of the dashed transitions between states disap-
proved and approved of object Customer, process components
p6 and p7 shown in Fig. 6 are generated with p6 setting
the state to disapproved and p7 setting the state to approved.
Fig. 6c shows the process component resulting from the added
synchronization edge between states extended and approved
of objects Offer and Customer respectively. The labeling of
the corresponding activities is arbitrary and can be changed
by the process designer during the next iteration of process
component modeling (step 1). Activity C of component p8
encapsulates the same operation as activity Approve customer
from component p2 in Fig. 2b. Therefore, the process designer
links both activities via a link activity.

As multiple participants contribute to process modeling,
organization-internal modeling guidelines are required to ensure
consistent granularity of the process components. In this paper,
we abstract from such guidelines and assume they exist and
are followed.

V. EXECUTION SEMANTICS

The modeled process components are managed in a run-time
repository, where they get interpreted during run-time. This
enables changing, adding, and removing process components
during run-time, which allows adaptable task execution. The
concept of optional tasks imposed during process execution, can
be handled by adding a corresponding process component to
the run-time repository even during process instance execution
and executing following this path. Before the execution of a
business process may start, OLC conformance between the
process components and the predefined object life cycle must
be ensured to avoid deadlocks [18]. If all components satisfy
this property, the process model also does.

A. Process Execution Rule Set

The operational semantics to execute business processes
consisting of multiple process components as introduced above
utilizes token play that follows five rules.

(R1) Instantiation. Instantiation of a process model instantiates

all comprised process components, i.e., all start events get a
token. This means, there does not exist an explicit ordering of
process components but an ordering of activities imposed by
data flow.
(R2) Activity enablement. An activity gets enabled if control
flow as well as data conditions hold. Thereby, we decouple both
conditions such that control flow is based on the token flow
through the process components and data objects are required
to exist in the expected states (cf., for instance, [16]). To enable
link activities, control flow and data conditions are required to
hold for any activity being element of that link activity.
(R3) Activity execution. Execution of an activity pushes
forward the control flow by enabling the control flow edge
originating from this activity and therefore enabling the
succeeding activity from the control flow perspective; control
flow execution follows a token game as described in [18]. XOR
gateways limit the number of enabled activities with respect to
decisions taken. The options, i.e., conditions, need to be non-
overlapping and complete such that always exactly one path can
be chosen. In case of link activities, all activities that are part of
that link activity and have been enabled from control flow and
data conditions get pushed forward by putting a token on the
control flow edges originating from that activity. Additionally,
each further activity belonging to the link activity gets pushed
forward if it is control-flow-enabled and if it shares the data
output conditions with the activity being actually executed.
(R4) Component termination. Termination of a single process
component leads to a re-initialization of that component as our
approach allows to reuse process components multiple times
throughout business process execution.
(R5) Process termination. A business process is terminated if
the termination condition is matched. Termination of the busi-
ness process removes all tokens from the process components.

These rules are applied in parallel to all process components
potentially resulting in multiple activities being enabled at the
same point in time. Following the concepts of production case
management, the process participant gets presented all these
activities – for instance, as task list such that the user can
decide which one to execute next; link activities are presented
only once. The execution semantics introduced above ensure
that only valid activities are provided, meaning that the process
participant follows one specific path through the process model,
which is not laid out at process instantiation. The described
task list solution is one implementation option but could easily
be replaced by, for instance, multiple forms, tabs, or buttons
describing upcoming work. However, these concepts can be
traced back to task lists and only act as another representation.
Usually, in the beginning of a business process, multiple paths
are probable but with each decision taken to execute a specific
activity, the number of remaining paths is reduced.

Below, we describe the execution semantics and the path
reduction using the introduced travel agency example, which
is presented with annotated tokens in Fig. 7. The tokens of
circle and square shape present activity enablement at three
different points in time during business process execution which
are differentiated by the colors white, gray, and black. Circles
denote control flow tokens while squares denote data flow
tokens. Referring to rule (iii), an activity is enabled if data
flow tokens are available on dashed edges indicating a read of
a data node such that each corresponding data object class is



referenced at least once and whether a control flow token is
available on the corresponding control flow edge.

Create 

offer

Change 

offer

Validate 

offer

Offer

[created]

Offer

[init]

Offer

[change

request]

Offer

[change

request]

Offer

[approved]

(a) Component p1.

Approve 

customer

Offer

[created]

Offer

[approved]

Customer 

[approved]

Customer

[init]

Customer

[dis-

approved]

(b) Component p2.

Create 

offer

Enter 

offer re-

strictions

Validate 

offer

Offer

[created]

Offer

[init]

Offer

[change

request]

Offer

[approved]

Offer

[extended]

(c) Component p3.

Cancel 

case

Offer

[canceled]

Offer

[*]

(d) Component p4.

Send 

offer

Offer

[sent]Offer

[approved]

Customer 

[approved]

(e) Component p5.

A

Offer

[created]

Customer 

[approved]
Customer

[dis-

approved]

Offer

[approved]

(f) Component p6.

B

Offer

[created]

Customer 

[approved]

Customer

[dis-

approved]

Offer

[extended]

Offer

[approved]

(g) Component p7.

C

Offer

[extended]

Customer

[init]

Customer

[approved]

(h) Component p8.

Fig. 7. Process components belonging to the travel agency business process
with three different token distributions differentiated by white, gray, and black
color. Circles on continuous edges targeting activities denote their enablement
from the control flow point of view while squares on dashed edges denote the
targeted activity’s enablement from the data flow point of view.

B. Example: Token Play

For this process model, we assume that the conformance
check was successful and that the termination condition
indicates a proper termination if object Offer is in data state
sent or canceled and the corresponding termination events
in the respecting process components p4 and p5 are executed.
Assuming the process components in Fig. 7 completely describe
a process model, the instantiation of this process model
instantiates all eight components by putting tokens into the
eight start events, indicated by the white circles put on the

edges originating from a start event. Both utilized data objects
are in the initial states for this process instance such that data
flow edges in components p1, p2, p3, p4, and p8 are assigned
a white square, indicating that the corresponding data objects
exist in the states specified in the data nodes. While control flow
would enable each activity directly preceding a start event, data
objects only enable the link activity Create offer and activity
Cancel case, which are presented to the process participant
for execution. For all other activities, at least one of the data
objects is not in the state as defined by the respecting data
nodes (cf. white squares).

Executing the cancellation results in a proper termination
of the business process, because state canceled for object Offer
is reached and the termination event is executed. Executing
link activity Create offer enables activities Validate offer in p1,
Enter offer restrictions in p3, and Approve customer in p2 in
addition to the still enabled activity Cancel case in p4. The
process participant cannot differentiate which variant of the
link activity is actually executed as both have identical data
inputs and outputs. Internally, the execution semantics ensure
that the appropriate one is chosen. Following rule (iv) from
above, both variants enable the control flow edge originating
from them.

Next, the process participant may decide to execute activity
Validate offer – again a link activity, but this time only the
variant in p1 is enabled because the control flow enablement
for the one in p3 is missing. Therefore, the mentioned variant
is executed. Depending on the actual execution, object Offer is
either transitioned to state approved or to state change request.
In this example, the latter takes place leading to two enabled
activities: Cancel case and Change offer. As p1 was terminated
by reaching the end event, it gets re-instantiated (see rule (v))
and because of the data condition, the mentioned activity is
enabled and ready for execution. In component p3, the control
flow still allows enabling activity Enter offer restrictions, but
as the data has changed, the enablement is refused. The same
holds for process component p2. Changing the offer now results
in the enablement situation as represented by the gray shaded
tokens in Fig. 7. Executing activity Approve customer completes
process component p2, re-instantiates it, and transitions object
Customer to state approved. At the same time, the other variant
of this link activity (activity C in p8) is not pushed forward
as the output is not identical to the one from activity Approve
customer. As the customer cannot be set into state init again
(cf. Fig. 5), this link activity will not get enabled again in this
process instance, meaning both process components will not
contribute to the process goal anymore. With that, the number
of probable paths through the process model is reduced step
by step (cf. paradigm change P3). The remaining three tasks
of the previous task list remain enabled as these utilize object
Offer and are not affected by changes of object Customer.
Additionally, object Customer in state approved fully enables
activity A in process component p6 (cf. black tokens in Fig. 7).

Executing activity Enter offer restrictions enables activity
Validate offer in process component p3 instead of p1. Besides,
activity Cancel case of p4 is still enabled. Along this procedure,
activity Validate offer of p3 is executed to approve the offer
that then enables the execution of activity Send offer of p5 that
transitions object offer into state sent. The offer in state sent
with the termination event being executed represents a valid



termination of the process instance.

In the described process instance, no activity of process
component p8 is enabled at any point in time as the process
participant decided for a different path through the process
model. While in the beginning, p8 could have been part of the
instance, the approval of the customer (see p2) before entering
offer restrictions to the offer revealed that a path via process
component p8 is not possible for the given process instance.

VI. EVALUATION

We evaluated the presented approach in a customer project
with a tourism corporation, where we focused on the method-
ology and user acceptance. The customer’s team was set up
with one process modeling expert, experienced in traditional
BPMN and EPC modeling, and three business experts from
different branches of the company. The investigated process of
the customer focused on request handling from agencies to the
back-offices. The existing process was handled manually via
email, phone, and letters. Due to the high workload and the
many resources required – in the company, up to 120 agents
worked concurrently to process approximately 75.000 process
instances a month – the introduction of a business process
management system was investigated.

Our analysis of the existing process showed that the work
of the employees focused on one single “happy path” that
was used in approximately 60 to 70 variants. Due to the
inability to capture all variants in process models, the customer
decided to focus on the seven topmost variants and a generic
happy path variant that should resemble most of the manual
handling enhanced with certain logic and traceability. Further,
the customer had the requirement that an employee should have
the possibility to move from the execution of a certain variant
to the generic “happy path” and vice versa at any time.

Since the resulting all-in-one process model would become
very large, we introduced the concepts shown in this paper
to capture the requirements. We started by modeling process
components such as different variants that could trigger a new
process (left out in this paper) and two concrete variants to
create a conceptual understanding at the customer. Interestingly,
the customer’s experts had no problem modeling the concrete
variants, whereas they were unsure about the generic process
(“Is it too generic? Is it already too specific?”). We then
introduced the required data modeling as well as the object life
cycle to these variants and added dashed transitions to the life
cycle to denote generic issues such as closing a case at any
time without modeling this in any activity. After the conceptual
understanding was established, we created a generic “happy
path” process component that matched both existing variants.
Finally, the five other variants have been modeled as process
components based on the “happy path” component.

We compared the similarity and complexity of all seven
process components that represent variants of the “happy path”
component with the “happy path” component itself. Fig. 8a
shows the similarity for (1) syntactical, semantic, and attribute-
related similarity of the components (activity similarity), (2)
structural similarity including contextual information and node
ids, and (3) a combined, overall similarity measured according
to the algorithms used in [19]. Fig. 8b shows the complexity
of the components without data objects and associations. Both

0%	  
10%	  
20%	  
30%	  
40%	  
50%	  
60%	  
70%	  
80%	  

1	   2	   3	   4	   5	   6	   7	  

Ac.vi.y	  Similarity	  

Structural	  Similarity	  

Overall	  Similarity	  

(a) Similarity compared to “happy path”.

0	  

20	  

40	  

60	  

80	  

100	  

120	  

140	  

1	   2	   3	   4	   5	   6	   7	   8	  

#Nodes	  

#Edges	  

(b) Complexity (no.8 is “happy path”).

Fig. 8. Process component similarity and complexity for the seven topmost
variants.

figures show that a correlation exists between the complexity
of the process components and their similarity to the “happy
path” component. Interestingly, the complex components no.6
and no.7 still have a similarity of around 45 to 49 percent.
A closer investigation of these components showed that the
customer introduced copies of the basic activities found in the
“happy path” component that had only been changed slightly,
e.g., from call agency to contact agency or write email to
agency. Due to the applied Wordnet-based semantic-similarity
measures for activities [20] and the structural equivalence
checks via contexts based on refined process structure trees
(RPST) [21], the components are detected as similar even while
the absolute number of activities has been multiplied. Referring
to the paradigm changes explained in Section III, i.e., (P1) a
process instance is composed of different process component
instances, (P2) the complete execution path is not visual, and
(P3) alternation between components should be possible, we
found a good acceptance at the customer side. In particular,
the customer was able to work on the five remaining process
components with only limited coaching/reviewing from our
side.

Finally, we qualitatively assess the understandability of
the given process model. Splitting complex process models
into multiple components following the methodology presented
in Section IV eases understanding of the process behavior.
Naturally, each of the smaller components is easier to under-
stand than the fully-pledged complex process model, but the
combination of all components might not be as the process flow
is distributed. However, as presented, each process component
consists of one specific case, e.g., the happy path, an exception
handling path, or a user-specific need for the distinction
of customer classes. Thus, assuming that each component
presents such an isolated part of the overall process, we can
safely assume that the set of process components is easier
to understand in terms of process behavior than the large,
combined process model.



VII. RELATED WORK

There are multiple approaches around dealing with flexibil-
ity in process models from different points of view. Declarative
process modeling [22] is activity-centric and allows to forbid
certain behavior by constraints, easing the specification of
flexible processes by avoiding to model all probable paths.
Based thereon, only allowed and executable activities are
presented to the process participant who then decides about
activity execution. Although it is activity-driven, data can
be considered by adding it as a constraint to the activity.
However, it seems more natural to model what steps have to
be undertaken to achieve a business goal rather then specifying
what must not be done. Case handling [12] deals with the
data perspective, only allowing to start execution of an activity
based on data dependencies. If a preceding activity, for instance,
provides the information required to start the succeeding one,
execution may start although the preceding one is not yet
finished. Proclets [23] focus on the communication between
lightweight process snippets which partition the process into
many parts which are executed after another or interactive.
Thereby, they allow late binding of the communication partners
and provide flexibility with respect to the participating parties.
These snippets relate to our process components in the process
model but do not provide alternative execution behavior except
from creating large processes models with many paths showing
each variant.

Coping with this issue, the Provop approach [6] provides a
flexible solution to manage variants by utilizing context-aware
change operations that are specified with respect to a reference
process. Conceptually, each variant is a set of change operations
specifically catered to a certain use case. Amongst others, the
authors describe policies to create the reference process and
to make sure that existing components do not get invalidated
while the reference process evolves. Thereby, the process model
contains control flow nodes only. The reference process can be
referred to the “happy path” component in our approach but
with different focus as we concentrate on data and control flow.
Further, we model the remaining variants not as a set of change
operations, but as process components which allow the variant
to be directly seen and ease the modeling approach, because
the user does not need to learn new concepts. However, both
approaches complement each other such that the concepts can
be merged for a holistic approach.

Process variants provide flexibility of processes during
design time with respect to variability. Similar to the Provop
approach, change patterns [7] help to classify the changes to
process models and allow the retracing of changes done to a
process model to ensure process correctness and robustness.
These change patterns are used to evaluate the ability of process-
aware information systems to handle process changes on the
process model as well as the instance level. [24] elaborates
extensively on the need of such systems. Flexibility of processes
is needed for exception handling, variability management,
and to cope with more unstructured processes resulting in
four flexibility needs: variability, looseness, adaptation, and
evolution. Our approach covers all of them. We support multiple
variants with process models that contain several process
components whose combination during run-time describes a
production case where the components get executed as needed.

The oclet approach [10] with its extension towards data

support [25] comes closest to our framework. In fact, each
oclet represents one specific part of the overall process and
at run-time, based on data and control flow dependencies, a
run, i.e., a trace, through the set of all scenarios is calculated.
However, oclets are presented as Petri nets which positively
add to the analyzability through the formal character but also
increase the usability barrier as practitioners rarely apply formal
methods. They require a more abstract view. Here, our focus on
BPMN comes into play, which is widely understood and also
utilized by practitioners in everyday working life. Additionally,
the utilization of Petri nets implies implicit modeling of data
objects and states which possibly lead to ambiguities; e.g.,
it is not clear which object an action manipulates. Explicit
modeling of data objects as in our component approach helps
in this regard. An explicit data view, as provided with the OLCs,
eases the modeling of data dependencies and the specification
of data manipulations. These aspects are completely out of
scope in [10]. The data extension does not provide such a data
view nor explicit data state modeling, but it allows the addition
of process instance data to the process model which is currently
out of scope for our Production Case Management framework.

In practice, usually large numbers of process variants
respectively process schemes must be handled. [8] addresses
this issue by introducing a flexible process design, combining
generic process templates and business rules. A process schema
including control flow, resources, and data is generated from a
template by applying business rules to it. The generation takes
place upon process instantiation and cannot be changed during
run-time. Therefore, the flexibility is limited to the design-time
instead of both as in the presented framework. [9] motivates the
need to individualize reference models at design-time. Unlike
the Provop approach, configurable models showing the different
variants as models handle the individualization. Again, run-time
flexibility is not provided.

Utilizing data dependencies is not new. Thereby, the control
flow is leading and upon the start of an activity, the data
dependencies are checked. The processing of the activity is set
on hold if the data dependencies are not met. On the other side
of the spectrum, object-centric approaches [26]–[29] exist which
led to the case management model and notation standard [30]
positioned as adaptive case management. Here, the existence of
objects in specific states decides about execution. Control flow
plays a very minor role and is mostly given implicitly. In this
paper, we combine the data and control flow perspectives; both
being similarly important for process execution. Further, we
introduce flexibility by allowing to alternate between different
process components to cope with current challenges, moving
traditional process modeling with BPMN into the field of
production case management [1], the pre-stage towards adaptive
case management.

The transformation of process models into OLCs or vice
versa is discussed in various approaches, e.g., [13]–[15],
[31]. The challenge within our Production Case Management
framework is to deal with dependencies between multiple OLCs.
For instance, the offer may only be sent to the customer, if she
was approved before. Most existing approaches including [13],
[14], [31] cannot deal with these inter-dependencies. [15]
can and thus we decided to utilize these algorithms for the
transformation between process models and object life cycles.



VIII. CONCLUSION

In this paper, we presented an implementation framework,
integrating production case management concepts into activity-
centric process modeling by specifying a modeling and an
execution perspective leading to flexible process management
at both: design-time and run-time. This framework allows the
representation of a complex business process in smaller and
easier to understand components that are interconnected by
control and data flow, rather than one large process model
as common in configurable or traditional process modeling.
Thereby, the approach is based on a run-time repository, where
the process components are interpreted during run-time. Hence,
the components can be changed, added, or removed even
while executing instances. This paper focuses on presenting
the concepts and leaves tooling to future work. Thereby,
tooling especially needs to handle the consistency of distributed
modeled components and their complexity; e.g., process model
abstraction is a proper technique for tackling complexity.

In detail, we represent a process model in terms of process
components that collectively describe the process behavior.
During process execution, the process participant may alternate
between several components, deciding at run-time which path
to follow through the process. At design-time, the various
components allow the modeling of the “happy path” on the
one side and exceptional behavior and additional details on the
other side. We discussed the application of this framework in
an industry project with a large tourism corporation and showed
the very positive impact of such an integrated framework.

In future work, we will present the formalization in terms of
a Petri net mapping to support the methodology and execution
semantics presented here. Thereby, we will evaluate whether
the oclet [25] approach might be utilized to build on existing
work and reuse existing analyzing techniques as, for instance,
soundness checking to ensure deadlock freedom. In addition, we
will work on formal verification, including data conformance
between the process components and the object life cycles
as well as validity of the termination condition. Further, we
will allow more operations within the generated object life
cycles, e.g., adding synchronization edges without constraints
or deleting edges of any type.

REFERENCES

[1] K. D. Swenson, “State of the art in case management,” Fujitsu, Tech.
Rep., March 2013.

[2] OMG, “Business Process Model and Notation (BPMN), Version 2.0,”
2011.

[3] M. Weske, Business Process Management: Concepts, Languages, Archi-
tectures. Second Edition. Springer, 2012.

[4] K. D. Swenson, Mastering The Unpredictable: How Adaptive Case
Management Will Revolutionize The Way That Knowledge Workers Get
Things Do. Meghan-Kiffer Press, 2010.

[5] J. B. Hill, “The case for case management solutions,” Gartner, 2012.
[6] A. Hallerbach, T. Bauer, and M. Reichert, “Capturing variability in

business process models: the provop approach,” Journal of Software
Maintenance and Evolution, vol. 22, no. 6-7, pp. 519–546, 2010.

[7] B. Weber, M. Reichert, and S. Rinderle-Ma, “Change patterns and change
support features–enhancing flexibility in process-aware information
systems,” Data & Knowledge Engineering, vol. 66, no. 3, pp. 438–
466, 2008.

[8] A. Kumar and W. Yao, “Design and management of flexible process
variants using templates and rules,” Computers in Industry, vol. 63,
no. 2, pp. 112–130, 2012.

[9] M. Rosemann and W. M. van der Aalst, “A configurable reference
modelling language,” Information Systems, vol. 32, no. 1, pp. 1–23,
2007.

[10] D. Fahland, “From Scenarios to Components,” Ph.D. dissertation,
Humboldt-Universität zu Berlin, 2010.

[11] M. Reichert and P. Dadam, “Enabling adaptive process-aware information
systems with adept2,” in Handbook of Research on Business Process
Modeling. Information Science Reference, 2009, pp. 173–203.

[12] W. M. P. van der Aalst, M. Weske, and D. Grünbauer, “Case Handling:
A New Paradigm for Business Process Support,” Data & Knowledge
Engineering, vol. 53, no. 2, pp. 129–162, 2005.

[13] J. Küster, K. Ryndina, and H. Gall, “Generation of Business Process
Models for Object Life Cycle Compliance,” in Business Process
Management. Springer, 2007, pp. 165–181.

[14] K. Ryndina, J. Küster, and H. Gall, “Consistency of Business Process
Models and Object Life Cycles,” in MoDELS Workshops. Springer,
2006, pp. 80–90.

[15] A. Meyer and M. Weske, “Activity-centric and Artifact-centric Pro-
cess Model Roundtrip,” in Business Process Management Workshops.
Springer, 2013, pp. 167–181.

[16] A. Meyer, L. Pufahl, D. Fahland, and M. Weske, “Modeling and Enacting
Complex Data Dependencies in Business Processes,” in Business Process
Management. Springer, 2013, pp. 171–186.

[17] OMG, “Unified Modeling Language (UML), Version 2.4.1,” 2011.
[18] A. Meyer, A. Polyvyanyy, and M. Weske, “Weak Conformance of

Process Models with respect to Data Objects,” in Services and their
Composition (ZEUS), 2012, pp. 74–80.

[19] F. Friedrich, J. Mendling, and F. Puhlmann, “Process model generation
from natural language text,” in CAiSE. Springer, 2011, pp. 482–496.

[20] G. A. Miller, “Wordnet: a lexical database for english,” Communications
of the ACM, vol. 38, no. 11, pp. 39–41, 1995.

[21] J. Vanhatalo, H. Völzer, and J. Koehler, “The Refined Process Structure
Tree,” Data & Knowledge Engineering, vol. 68, no. 9, pp. 793–818,
2009.

[22] W. M. P. van der Aalst, M. Pesic, and H. Schonenberg, “Declarative
workflows: Balancing between flexibility and support,” Computer
Science-Research and Development, vol. 23, no. 2, pp. 99–113, 2009.

[23] W. M. P. van der Aalst, P. Barthelmess, C. A. Ellis, and J. Wainer,
“Proclets: A Framework for Lightweight Interacting Workflow Processes,”
Int. J. Cooperative Inf. Syst., vol. 10, no. 4, pp. 443–481, 2001.

[24] M. U. Reichert and B. Weber, Enabling Flexibility in Process-Aware
Information Systems: Challenges, Methods, Technologies. Springer,
2012.

[25] D. Fahland and R. Prüfer, “Data and abstraction for scenario-based
modeling with petri nets,” in Application and Theory of Petri Nets.
Springer, 2012, pp. 168–187.

[26] V. Künzle and M. Reichert, “PHILharmonicFlows: Towards a Framework
for Object-aware Process Management,” Journal of Software Mainte-
nance and Evolution, vol. 23, no. 4, pp. 205–244, 2011.

[27] D. Cohn and R. Hull, “Business Artifacts: A Data-centric Approach to
Modeling Business Operations and Processes,” IEEE Data Engineering
Bulletin, vol. 32, no. 3, pp. 3–9, 2009.

[28] G. Redding, M. Dumas, A. H. ter Hofstede, and A. Iordachescu, “A
flexible, object-centric approach for business process modelling,” SOCA,
vol. 4, no. 3, pp. 191–201, 2010.

[29] D. Dori, Object Process Methodology: A Holistic Systems Paradigm.
Springer, 2002.

[30] OMG, “Case Management Model and Notation (CMMN),” January
2013.

[31] R. Liu, F. Y. Wu, and S. Kumaran, “Transforming Activity-Centric
Business Process Models into Information-Centric Models for SOA
Solutions,” Journal of Database Management, vol. 21, no. 4, pp. 14–34,
2010.


	Introduction
	Example
	Simple Process Components of the Travel Agency
	Refined Process Components of the Travel Agency
	Sample Execution of the Travel Agency's process

	Terminology and General Approach
	Methodology
	Process Component Modeling
	Object Life Cycle Generation and Modeling
	Process Component Generation

	Execution Semantics
	Process Execution Rule Set
	Example: Token Play

	Evaluation
	Related Work
	Conclusion
	References

