

Seminar Reader

Business Process Management

Winter Term 2006/2007

Editors

Gero Decker

Hagen Overdick

Frank Puhlmann

Hilmar Schuschel

Mathias Weske

Contact

Business Process Technology Group

Hasso Plattner Institute for IT Systems Engineering

at the University of Potsdam

P.O. Box 90 04 60

D-14440 Potsdam, Germany

 II

 III

 Preface

This seminar reader contains selected papers of the seminar part of the lecture Business Process Man-

agement II, held in winter term 2006/2007 at the Hasso-Plattner-Institute. Master students of IT sys-

tems engineering discussed and researched current topics in the area of business process management.

Each paper contained in this seminar reader was accompanied by a conference-style talk.

We had a broad range of topics, ranging from theoretical foundations over semantic web services up to

investigations on practical implementations. All topics have been grounded in lectures given before-

hand, so the students had a very broad foundation and talks and papers dived right into challenging

questions. The topics are divided into three major parts, resembling the parts of the lectures given be-

forehand. Part one introduced semantic services, were a paper about service interface adaptation is

contained in this reader. Part two covered service-oriented architectures with a special focus on cho-

reographies. Three papers based thereon discuss multi-lateral collaborations and the bridging of global

and local models. Part three investigated formal aspects of service-oriented architectures using the pi-

calculus. This reader contains papers about a new compatibility notion for services as well as imple-

mentation issues for a pi-calculus-based process engine.

We would like to thank the students that attended our lecture and contributed to this seminar reader –

it was a very interesting and inspiring experience!

Gero Decker, Hagen Overdick, Frank Puhlmann, Hilmar Schuschel, Mathias Weske

Potsdam, February 2007

 IV

 V

Table of Contents

Service Interface Adaptation Uwe Kylau

SOA revisited for multilateral collaborations Martin Probst

Bridging Global and Local Interaction Models Using Petri Nets:

Generating Interface Processes out of Interaction Nets

Silvan Golega

Bridging Global and Local Interaction Models Using Petri Nets:

Enforceability

Artem Polyvyanyy

A Compability Notion based on Desired Interactions Matthias Weidlich

Implementing Service Orchestrations using Pi-Calculus Olaf Märker

 VI

Service Interface Adaptation
Enabling Automation with Semantics

Uwe Kylau

Hasso-Plattner-Institute for IT-Systems Engineering at the University of Potsdam,
Prof.-Dr.-Helmert-Strasse 2-3, 14482 Potsdam, Germany

uwe.kylau@hpi.uni-potsdam.de

Abstract. The vision of a service marketplace is to establish business
relations between service consumers and providers in a Service-oriented
Architecture (SOA). However, in more complex scenarios there is often a
mismatch between business protocols, i.e. the course of interaction that
is taken to deliver certain functionality. In order to close this gap and
address the widest range of potential consumers, a provider must adapt
its service interfaces to consumer demands.
This document is based on previous work in the area of service interface
adaptation. It presents a particular approach, which is augmented with
semantics to enable a certain degree of automation. At the end it also
gives reasons, why a full automation is hard to realize.

1 Introduction

Web service marketplaces are today’s most promising application scenarios for a
Web/XML-based Service-oriented Architecture (see e.g. [3]). Taken into account
that an SOA always has real world effects (according to [4]), one can draw
a simple conclusion. These marketplaces are controlled by the same economic
principles as those observed in their real world counterpart. Thus, adapting
to consumer expectations is a considerable requirement for the development of
service marketplaces.

The term adaptation can generally be subsumed with: provide a flexible
business model. In order to deliver certain capabilities, a provider should offer
various possibilities to interact with the consumer, and if necessary, should be
able to quickly establish new ways of interaction. In most cases these interactions
are bi-directional and non-trivial, i.e. consist of several steps that are connected
with complex control flow. Hence, a process-like character is often recognizable.
In [4] the interaction with a service is described in a similar fashion. An informa-
tional model deals with structure and semantics of exchanged data. Next to that
a service also needs a behavioral model that gives information about which ac-
tions (steps) to perform. Moreover, the “[..] temporal relationships and temporal
properties of actions and events [..]”1 must be known, which are characterized

1 [4], p.18

by the process. Both models are mostly referred to as structural and behavioral
interface of a service. Together they form the overall service interface.

Structural interfaces can be expressed with various Web Services specifica-
tion technologies and represented in various notations. Common nowadays is to
supply a Web Service description as a WSDL document ([5]) written in XML
([9]). Nonetheless, semantically enriched WSDL like SAWSDL ([10]) and com-
plete upper ontologies like OWL-S ([6]) or WSMO ([12]) are gaining more and
more importance. The latter combine structural and behavioral interface on a
higher level of description. The low-level standard for behavioral interfaces is
BPEL ([8]).

Almost all major Web Services specifications have been implemented and in-
corporated into integrated tool suites. Accordingly, from the technical side there
should be no obstacles for the development of a sophisticated service market-
place. Unfortunately, the problems arise when analyzing the domain in detail.
Especially, the interaction with the consumer is of interest at this point. Con-
sumers would like to have flexibility on all aspects of the interaction. They want
to decide when, where and how to interact. All this is no real problem in a SOA.
Services are available most of the time and from every place that has access
to the Internet. Furthermore, Web Services technologies are integrated on all
well-established platforms, which run on a larger number of devices. But there is
one aspect that imposes difficulties. Consumers also want to have flexibility on
what is exchanged during the interaction and in which order. This ranges from
‘let us only exchange what is necessary’ to ‘give me all the information you can
provide’, even to ‘I want to process each item separately, instead of all at once’.

The degree of flexible interaction with a service depends on the flexibility
that is defined (or better designed) in the service interface. The service capabil-
ities are fixed, as well as structure and behavior. In a SOA this fact holds for
both, the provider and the consumer. It is unreasonable to demand from the
consumer that he waits with implementing his side of the interaction protocol
until the providing service is determined. On the other hand, a provider cannot
anticipate all possible ways of interacting with its service. The usual case will
be that both sides have their relatively inflexible interface, one side demanding
certain functionality and the other one providing it (see Fig. 1). A mismatch be-
tween those interfaces is likely to occur. The classic market rules now expect the
provider to adapt his interface in such a way, so that it behaves like the interface
required by the consumer. It is a key requirement for a service marketplace to
be able to perform this service interface adaptation.

Adapting a published service interface to an interface that is requested by
a service consumer is a non-trivial task. Both, messages and behavior (control
flow), must be mediated by an adaptor. Until now, especially the problem of
adapting behavioral interfaces has received little attention in the area of service-
oriented computing. One approach that is presented in [1] deals with it in a
suboptimal way. The adaptation between two interfaces is defined manually and
the adaptor is then generated from the result of this definition. The approach in
this paper intends to overcome the latency of manual work and describes a way

to automate the adaptation definition by extending the existing approach with
semantics.

Fig. 1. The diagram depicts the conceptual interface mismatch between service con-
sumer and provider. The expected service interface is shown green and the provided
interface blue.

The rest of this document is structured as followed. Section 2 presents an al-
gebra and visual notation for service interface adaptation that maps (transforms)
behavioral interfaces. In Sect. 3 the algebra and visual notation is enhanced with
semantic annotations and an algorithm is introduced that allows for automation
of the interface mapping procedure. Afterwards Sect. 4 gives information about
related work in the area of service interface adaptation and Sect. 5 concludes
the paper.

2 Algebra and Visual Notation for Service Interface
Adaptation

In the following, an approach is outlined that deals with the problem of ser-
vice interface adaptation. Due to space limitations only the main points of the
approach are introduced. Please refer to [1] for a detailed description.

The approach defines an interface transformation algebra founded on a sim-
ple service interface model. Altogether, the algebra consists of six operators to
formulate interface transformation expressions. These, in turn, provide the input
for the generation of adaptors. A prototypical implementation of the approach
was also produced. It simulates message exchange between two parties that is
mediated by adaptors.

For the purpose of better visualizing an interface mapping, the approach
uses a visual notation that is based on UML State Charts ([11]). Figure 2 shows
an example of this notation. The example will be used throughout the rest of
the document and shall be explained here. Two behavioral service interfaces
are depicted. The state chart at the top models the interaction protocol of the
provided service. On reception of a purchase order the service is triggered. It then
sends back an order response wherein all or a subset of the requested line items
are accepted or rejected. Outstanding line items are processed further. When
their status is available, it is communicated in one or more order updates. Then
payment and shipment information is sent to the requestor and after receiving
a notification of the payment, the successful payment is synchronized with the
requestor.

On the opposite side another state chart models the interaction protocol that
the service consumer understands and expects. This is the required interface. As
can be seen, it also starts with the reception of a purchase order. The next step
requires the provider to send back an order response that contains acceptance
information on all the requested line items. When this is done the consumer is
prepared to receive payment information and shipment information separately
and concurrently. Thereafter he or she sends a notification as soon as the pay-
ment is performed, whereby the interaction is considered to be finished.

Fig. 2. This diagram shows an example of a mismatch between provided (top) and
required interface (bottom).

It is obvious that the two interfaces do not match. The next sections will
describe how the interface adaptation by transformation is accomplished, but
beforehand it must be clearly pointed out that there is one limitation. The ap-
proach only works in scenarios where the required interface encompasses the
same, or less, functionality (service capabilities) as offered by the provided in-
terface. Otherwise, the adaptor would have to supply the missing functionality,
which would result in a dispersal of business logic. However, this does not rule
out cases where incoming data of the required interface is completely irrelevant
to the remaining course of interaction and hence can be discarded.

2.1 Service Interface Model

The model of the service interface contains relatively few concepts. An interface
I consists of a set of actions and a set of runs that prescribe an order on the
execution of actions (control flow). Loops are a special case in the interface
model. They are limited to consecutive executions of a single action.

Definition 1. An action A is tuple A = (AN, MT, D) where AN is the name
of the action (action identifier), MT is the message type involved during a send
or receive and D is the direction of the action. A direction value of IN is used
for receiving actions, while OUT is used for sending actions.

It is possible that not all actions of an interface are executed during an interac-
tion, e.g. when there is conditional branching. A complete interaction sequence
is defined as a trace through the interface. The overall set of traces describes
the behavior of the interface. Traces are grouped into disjoint groups gt1, gt2,
..., where each group consists of all traces that contain the same set of action
instances.

Definition 2. A run r over an interface I for a given group of traces gt is a
partial order <r such that:

∀a1, a2 ∈ Actions(gt) a1 <r a2 ↔ (∀t ∈ gta1 <t a2)

Actions(gt) denotes the common set of actions of the traces in gt and <t is the
order relation within a trace t.

In Fig. 3 an example interface along with its runs is illustrated.

Fig. 3. The figure illustrates an abritrary service interface together with the corre-
sponding traces, grouped traces and runs.

2.2 Interface Transformation Algebra and Visual Notation

In this section the operators of the algebra are introduced together with their
visual notation. The operators are employed to transform a source interface
into a target interface, which is not to be mistaken with provided and required
interface. They are precisely defined in terms of input parameters and output
result (see [1]). The following will only give a brief description that is necessary
to understand the rest of the document.

Fig. 4 shows the visual notation of the six operators with SI being the source
interface and TI being the target interface.

Fig. 4. These diagrams depict the visual notation for the operators of the algebra.

The Flow operator is the simplest one. It takes a source action and replaces
it with a target action, i.e. in every run of SI each occurrence of the source
action is replaced with an occurrence of the target action to form the runs of TI.
The message of source message type is transformed into a message of the target
message type via a data transformation function. The details of this procedure
are not in the focus of the approach, but in [1] reference is made to XSLT ([7])
and work in the area of Web data transformation ([2]).

The Hide operator is used to drop an action from the source interface so it
gets hidden in the target interface.

The Gather operator comprises a family of operators Gathern where n is
the number of source actions. Gather takes several source actions as input and
replaces them with a single target action, i.e. each occurrence of a respectively
ordered set of actions in the runs of SI is replaced with a target action to form the
runs of TI. It should be noted that the consecutive order of the source actions
may solely be interrupted by actions that are transformed into target actions
that occur before the designated gathering target action. The source messages
are collectively transformed into a single target message.

The Scatter operator is the reversed counterpart of the Gather operator.
It also comprises a family of operators Scattern where n indicates the number
of target actions that replace a single source action. The order of the target
actions is determined by an input parameter Placement. There is no particular
notation yet, but a proposal made use of nested control flow operators. A short
example of a placement expression was given with: SEQ(TA2, PAR(TA1, TA3)).
TA1, ..., TA3 are actions of the target interface. SEQ and PAR denote sequential

and parallel control flow. The Scatter operator also defines a data transformation
function that splits the source message into several target messages.

Collapse and Burst are the last two operators. Collapse is used to replace
multiple occurrences of a source action with a single target action. The data
transformation function converts a list of equally typed messages into a single
message of the target message type. Burst works the other way round. It replaces
a single source action with multiple occurrences of one target action and splits
the source message into a list of target messages.

Applying the algebra to the problem domain of interface adaptation results
in a mapping between a provided and required interface. The outcome of such a
mapping is illustrated in Fig. 5. A number of interface transformation expressions
are graphically represented. Their algebraic notation is given in the list below,
with RI being the required and PI being the provided interface. The terms Fn

denote an appropriate data transformation function.

1. E1 = Flow(RI, Receive Purchase Order, F1, Receive Order)
2. E2 = Collapse(PI, Send Order Update, F2, T empAction)
3. E3 = Gather(E2, Send Order ACK, TempAction, F3, Send Purchase Order

Confirmation)
4. E4 = Scatter(PI, Send Payment & Shipment Information, F4, PAR(Send

Order Bill, Send Shipment Notification))
5. E5 = Flow(RI, Receive Payment Notification, F5, Receive Payment Notifi-

cation)
6. E6 = Hide(PI, Send Payment Confirmation)

Fig. 5. This diagram shows an example transformation between provided (top) and
required interface (bottom).

3 Automating the Interface Mapping by Applying
Semantics

So far, the approach presented in the last section only allows for automated gen-
eration of adaptors. The interface mapping has to be done manually, before the
resulting interface transformation expressions can be provided to a generator.
However, this procedure is rather unsuitable for the application domain intro-
duced in Sect. 1. A service consumer does not want to wait until a human worker
has adapted the interfaces. The consumer wants instant access. Consequently,
the interface mapping must be automated, too.

In this section a preliminary enhancement of the approach is outlined. It
employs semantic service matchmaking to identify corresponding actions in the
provided and required interface. Appropriate transformation operators can then
be determined according to the runs of the interfaces. F-Logic ([13]) was chosen
as notation for semantic expressions, because it is not too hard to learn and
relatively easy to understand.

3.1 Assumptions for Enhancing the Approach with Semantics and
the Changed Service Model

As the presented enhancement marks only a staring point for a comprehensive
semantic approach, the following assumptions had to be made. First, the assump-
tion of the original approach shall be mentioned again: The required interface
must not introduce any further functionality. This is essential for the approach
to work.

Additionally, it must now be guaranteed that each action contains sufficient
semantic annotations. In particular, these are preconditions and effects associ-
ated with an action. Preconditions are used for sending actions, because they
describe the conditions that have to hold before a message can be send. On the
other hand, effects are used for receiving actions, as they formulate the condi-
tions that hold after a message is received. The need for effects on sends and
preconditions on receives did not became apparent until now. Since it cannot be
totally ruled out, the enhanced action model was conceived for the general case.

Definition 3. An action A is a tuple A = (AN, MT, D, P, E) where AN is the
name of the action (action identifier), MT is the message type, D is the direction
of the action, P is a set of preconditions and E is a set of effects. Both, P and
E, must be given in F-Logic.

It was stated above that semantic annotations have to be sufficient. The reason
for this requirement can be found in the problem to clearly distinguish two
actions from another. There is a conceptual equivalence between two actions, in
cases where they share message type (MT) and direction (D). Thus, a computer
could not decide which one is suitable to map a corresponding action in the source
interface. This imposes difficulties on semantic matchmaking, unless there are
sufficient semantic annotations that distinguish such actions.

For the purpose of simplicity and to make first correctness checks easy, inter-
faces with loops are not allowed. Loops are difficult to identify and matchmaking
conditions that aim at Burst or Collapse operators is complicated to specify. Fur-
thermore, both interfaces are required to use the same ontology as their type
system. This avoids the additional step of mapping data types to ontological
concepts.

An almost completely annotated example is provided in Fig. 7. It slightly
differs from the example in the previous section, as there is only an option to send
an order update once. There also had to be defined a special NOP action that
does nothing, except identifying the conditions that hold in the branch where
the action is located. This is necessary to semantically describe each branch that
can be taken in a conditional branching.

Definition 4. A NOP action N is an action, where N = (AN, MT, D, P, E),
AN = “NOP”, P is a set of preconditions, E is empty and MT, D are not set
(null).

3.2 The Automation Algorithm

The main principle of the automation algorithm is to map actions that need data
to actions that provide data. E.g., receiving actions in the provided interface are
mapped to receiving actions in the required interface, because during interaction
incoming messages adhere to the definitions of the required interface and must
be transformed into messages that are understood by the provided interface. For
“sending” actions this principle works vice versa.

In order to find out which actions of the opposite interface are suitable to
provide required data, semantic matchmaking is performed. The result is a map-
ping where target actions of potential operators are mapped to source actions.
Each 1 : n relation in this initial mapping corresponds to a Gather operator. All
1 : 1 relations must be reversed. Thus, source actions are now mapped to target
actions. Each 1 : n relation in the reversed mapping corresponds to a Scatter
operator. The remaining 1 : 1 relations indicate Flow operators.

Automatic generation of data transformation functions is out of scope of this
approach, but could be implemented according to [2]. The same applies to the
semantic matchmaking algorithm. Moreover, the determination of placement for
the Scatter operator is assumed to be given implicitly by the target interface of
any such operator. A complete version of the algorithm in Java-related pseudo-
code is given in App. A.3.

During the first phase, the algorithm iterates over both interfaces. In the
provided interface only receiving actions are interesting. Hence, for each receiving
action, possible source actions are searched in the required interface. For this
purpose, the effects of all receives in the required interface are matched against
the effects of the currently selected receive in the provided interface. If a full
or partial match is encountered, the action of the required interface is marked
as “contributing” to the selected action. At the end of each iteration the union
of effects of all “contributing” actions are checked for collisions and matched

against the effects of the selected action. If this check results in a full match, the
selected action is mapped to the “contributing” actions.

After processing all receives in the provided interface, the second iteration
does the same with the sends in the required interface. In Fig. 6 the beginning
of the example interfaces is shown. The algorithm first selects Send Purchase
Order Confirmation and tries to find possible source actions for this action.
Starting with Send Order ACK the preconditions of all sending actions in the
provided interface are checked. In this case, the preconditions of Send Order
ACK partially match the preconditions of Send Purchase Order Confirmation.
It is no full match, because lessorequal(...) does not conform to equal(...).
The remaining sends in the provided interface are processed and the result is a
set of “contributing” actions with three entries: Send Order ACK, Send Order
Update and NOP. Send Purchase Order Confirmation is mapped to these three
actions. The second iteration continues until there are no more sends available
in the required interface.

Fig. 6. The diagram illustrates an example mapping between provided (top) and re-
quired interface (bottom).

The next phase involves the selection of algebra operators as desrcibed above.
In the example in Fig. 6 there is one 1 : 1 mapping that is reversed and will
result in a Flow, and one 1 : n mapping that will result in one or more Gather
operators. To achieve this, the algorithm checks, if all three associated actions
are contained in each run of the provided interface. As the scenario involves
conditional branching, this check will fail. Now, the algorithm iterates over all
runs of the provided interface and determines for each run the subset of actions
that are contained in the run. The found subsets are stored in a distinct list
(no duplicates allowed). After the iteration has finished, a Gather operator is
inserted for each stored subset (see Fig. 7). The number of Scatter operators is
determined in the same way during processing of the reverse mapping.

At the end the algorithm will look for sends in the provided interface and
receives in the required interface that are not included in the mapping. These
actions can be hid and the algorithm can finish.

3.3 Limitations of the Enhanced Approach

There are several limitations in the presented approach that are mainly caused
by its preliminary status. Because of the control flow restriction (no loops),
only a subset of all possible interfaces can be covered. In consequence, Burst
and Collapse operators were left out and cannot be produced by the automation
algorithm. In addition, the approach does not allow two actions to be identical, as
they cannot be distinguished during semantic matchmaking and would possibly
lead to incorrect results. But, this restriction forbids service interfaces where one
action needs to be performed twice, maybe with two different instances of the
same type. The mapping produced in such a case would be quite confusing. On
the other hand, it is not really ensured that semantic description are sufficient
to perform semantic matchmaking. If the semantic descriptions are not detailed
enough, the algorithm might produce incorrect results or no results at all.

4 Related Work

The problem of behavioral interface adaptation has been addressed in the field
of component-based software engineering. In [14] a notion of compatibility be-
tween components is defined, where behavioral interfaces are described as finite
state machines. For a given adaptor and two incompatible component interfaces
a check is performed that verifies, if the adaptor can mediate between the in-
terfaces. The generation of adaptors is based on links between similar operation
parameters, but this does not involve semantic matching.

In the area of Web services, research focus has been on identifying “mis-
match patterns” between two interfaces ([15], [16]). The adaptation is done via
templates or by mapping between operational services (corresponding to the no-
tion of actions in this approach). But, again these approaches do not consider
automation or the use of semantics to enable automation.

A possible candidate for automated interface adaptation is the work pre-
sented in [17]. It deals with automatic composition of Web services. The composi-
tion is goal-oriented and achieves a coordination between two or more component
services. It could be adopted to solve the problem of interface adaptation. For
the required interface a corresponding compatible interface, in fact the consumer
interface, must be determined. Then a composition goal has to be extracted from
the semantic descriptions. With the goal and two service interfaces a composite
service can be generated that mediates the interaction between consumer and
provider.

5 Conclusion

This document presented an enhancement to the approach in [1]. The algebra
and visual notation of [1] was introduced and their contribution to the problem
of service interface adaptation was outlined. Acting on a few assumptions an
algorithm was described that allows for automatic generation of interface trans-
formation expressions. It was also pointed out that the approach has several
limitations, which accumulate to the fact that a totally correct interface map-
ping cannot be ensured. For this reason, it must be stated that the approach
in its current state is not feasible for automated service interface adaptation.
However, a semi-automated application should be possible, e.g. executing the
algorithm and manually checking the result.

Altogether, the adoption of semantic matchmaking techniques provide a
promising approach to support automated service interface adaptation. Nonethe-
less, the future goal of any work in this areas must be full automation. Mis-
matches between service interfaces must be adapted on demand and within sec-
onds, because they occur in a highly dynamic service marketplace scenario. To
even go a step further, for a given behavioral interface it should be possible to
generate all interfaces that can be adapted to this one, including appropriate
adaptors. Then, a service consumer can simply choose the interface that suits
him best and the adaptor is at hand immediately.

In order to get to this point, there are some things that should be further
investigated. First, the approach has to be completed in terms of algebra support
and support of control flow, so it can cover a broader set of behavioral interfaces.
The algorithm should be implemented in a tool to easily test it with complex
real-world scenarios, as this is the simplest way of identifying possible pitfalls.
Regarding the problem of expressive semantic descriptions, it might be necessary
to develop a methodology for annotating service interfaces with semantics. Such
a methodology should encompass the whole lifecycle of service interface definition
and would have to guide providers, as well as consumers, from initial design to
publication and change management.

References

1. Dumas, M., Spork, M., Wang, K.: Adapt or Perish: Algebra and Visual Notation
for Service Interface Adaptation Business Process Management (2006) 65–80

2. Popa, L., Velegrakis, Y., Miller, R., Hernández, M., Fagin, R.: Translating Web
Data In Proceedings of the 28th International Conference on Very Large Databases
(VLDB’02) (2002) 598–609

3. Barros, A., Dumas, M., Bruza, P.: The Move to Web Service Ecosys-
tems, BPTrends (2005), http://www.bptrends.com/publicationfiles/12-05-WP-
WebServiceEcosystems-Barros-Dumas.pdf

4. MacKenzie, C., Laskey, K., McCabe, F., Brown, P., Metz, R.: Reference
Model for Service Oriented Architecture 1.0, OASIS (2006), http://www.oasis-
open.org/committees/download.php/19679/soa-rm-cs.pdf

5. Christensen, E., Curbera, F., Meredith, G., Weerawarana, S.: Web Services Descrip-
tion Language (WSDL) 1.1, W3C Note (2001), http://www.w3.org/TR/wsdl/

6. The OWL Services Coalition: OWL–S: Semantic Markup for Web Services, (2003),
http://www.daml.org/services/owl-s/1.0/owl-s

7. Kay, M.: XSL Transformations (XSLT) Version 2.0, W3C Recommendation (2007),
http://www.w3.org/TR/xslt20/

8. Andrews, T., et al.: Business Process Execution Language for Web Services Version
1.1, (2003), http://download.boulder.ibm.com/ibmdl/pub/software/dw/specs/ws-
bpel/ws-bpel.pdf

9. Bray, T., Paoli, J., Sperberg–McQueen, C., Maler, E., Yergeau, F., Cowan, J: Ex-
tensible Markup Language (XML) 1.1 (Second Edition), W3C Recommendation
(2006), http://www.w3.org/TR/xml11

10. Farrel, J., Lausen, H.: Semantic Annotations for WSDL and XML Schema, W3C
Candidate Recommendation (2007), http://www.w3.org/TR/sawsdl/

11. Unified Modeling Language Specification Version 1.4.2 OMG (2004),
http://www.omg.org/docs/formal/04-07-02.pdf

12. Roman, D., Lausen, H., Keller, U., et al.: Web Services Modeling Ontology
(WSMO), WSMO Final Draft (2006), http://www.wsmo.org/TR/d2/v1.3/

13. Kifer, M., Lausen, G., Wu, J.: Logical Foundations of Object-Oriented and Frame-
Based Languages, Journal of the ACM 42(2) (1995) 741–843

14. Yellin, D., Strom, R.: Protocol Specification and Component Adaptors, In ACM
Transactions on Programming Languages and Systems 19(2) (1997) 292–333

15. Alonso, G., Pautasso, C., Björnstad, B.: CS Adaptability Container, Deliverable
#11, EU FP5 Project “ADAPT” (2004)

16. Benatallah, B., Casati, F., Grigori, D., Motahari Nezhad, H., Toumani, F.: Devel-
oping Adapters for Web Services Integration, In Proceedings of the 17th Interna-
tional Conference on Advanced Information System Engineering (2005) 415–429

17. Pistore, M., Roberti, P., Traverso, P.: Process-level composition of executable Web
services: “on-the-fly” versus “once-for-all” composition, The Semantic Web: Re-
search and Applications 3532 (2005) 62–77

A Appendix

A.1 Service Interface Example with Semantic Annotations

Fig. 7. Example of semantically annotated service interfaces with transformation
between them.

A.2 Ontology (type system) of the Service Interface Example in
F-Logic

ID :: string.
CustID :: ID.
ArtID :: ID.
OrderID :: ID.
BillID :: ID.

ItemNo :: integer.
Quantity :: integer.

Price :: decimal.

ACCEPTED : OrderStatus.
REJECTED : OrderStatus.

Order[customerno => CustID,
itemlist => OrderItemList].

OrderItemList[count => Quantity,
items =>> OrderItem].

OrderItem[itemno => ItemNo,
articleno => ArtID,
amount => Quantity].

OrderConfirm[orderid => OrderID,
orderstatus => OrderStatus,
price => Price.
statuslist => OrderItemConfList].

OrderItemConfList[count => Quantity,
conf_items =>> OrderItemConfirmation].

OrderItemConfirmation[item => OrderItem,
itemprice => Price,
status => OrderStatus].

OrderConfirmUpdate[orderid => OrderID,
newprice => Price,
statuslist =>> OrderItemConfirmation].

OrderBill[billID => BillID,
orderid => OrderID,
amount => Price,
accountinfo => AccountInfo,
duedate => date].

ShipmentInfo[orderid => OrderID,
deliveryid => DeliveryID,
shipmentdate => datetime
exp_deliverydate => date].

PayAndShipInfo[bill => OrderBill,
shipinfo => ShipmentInfo].

PaymentNotify[billID => BillID,
paymentdate => datetime].

PaymentConfirm[billID => BillID,
orderID => OrderID].

A.3 Automation Algorithm in Pseudo-Code

The algorithm on the following pages is given in Java-like pseudo-code. Two
functions are defined: main and getSourceActions. All other functions should
be self-explanatory. Please refer to Sect. 3 for a textual description of the algo-
rithm.

main:

input : PI, RI : Interface; // provided + required intf.
output : RES : vector<InterfaceTransformationExpression>;

{
 // mapping target actions to source actions (and vice versa)

 action_mapping : map<Action, vector<Action>>;
 reverse_action_mapping : map<Action, vector<Action>>;

 source_actions : vector<Action>;
 unused_actions_PI, unused_actions_RI : vector<Action>;

 transform_func : DataTransformationFunction;

 unused_actions_PI = actions(PI);
 unused_actions_RI = actions(RI);

 foreach ta in actions(PI) do {
 // look for “receives“ in provided interface
 if (direction(ta) = IN) then {
 // get source actions from required interface

 source_actions = getSourceActions(ta, RI);
 // for a “receive” we need source actions in the
 // required interface
 if (source_actions = null) then

 exit(-1);
 else {

 action_mapping.put(ta, source_actions);
 unused_actions_PI.remove(ta);
 unused_actions_RI.remove(source_actions);
 }
 }
 }

 foreach ta in actions(RI) do {
 // look for “sends“ in required interface
 if (direction(ta) = OUT) then {
 // get source actions from provided interface

 source_actions = getSourceActions(ta, PI);
 // for a “send” we need source actions in the
 // provided interface
 if (source_actions = null) then

 exit(-1);
 else {

 action_mapping.put(ta, source_actions);
 unused_actions_RI.remove(ta);
 unused_actions_PI.remove(source_actions);
 }
 }
 }

 foreach ta in action_mapping.keyset() do {
 // GATHER: ta is mapped to several source actions
 if (length(action_mapping.get(ta)) > 1) then {

 subset : vector<Action>;
 action_subsets : vector<vector<Action>>;

// for “receives” add GATHER from RI -> PI
 if (direction(ta) = IN) then {
 // check, if each run of RI contains all source actions
 if (!actionsInAllRuns(action_mapping.get(ta), RI)) then {
 foreach run in runs(RI) do {

 subset = getActionsInRun(action_mapping.get(ta), run);
 if(isActionSetComplete(subset, ta)) then {
 if(!action_subsets.contain(subset)) then

 action_subsets.add(subset);
 } else exit(-1);

 }
 foreach set in action_subsets do {

 // compute data transformation function from
 // source actions subset to target action
 transform_func = getDataTransfFunc(set, new vector(){ta});
 RES.add(new Gather(RI, set, transform_func, ta));

 }
 } else {

 // compute data transformation function from
 // all source actions to target action

 transform_func = getDataTransfFunc(action_mapping.get(ta),
 new vector(){ta});
 RES.add(new Gather(RI, action_mapping.get(ta),

 transform_func, ta));
 }
 // for “sends” add GATHER from PI -> RI
 } else {
 // check, if each run of PI contains all source actions
 if (!actionsInAllRuns(action_mapping.get(ta), PI)) then {
 foreach run in runs(PI) do {

 subset = getActionsInRun(action_mapping.get(ta), run);
 if(isActionSetComplete(subset, ta)) then {
 if(!action_subsets.contain(subset)) then

 action_subsets.add(subset);
 } else exit(-1);

 }
 foreach set in action_subsets do {

 // compute data transformation function from
 // source actions subset to target action
 transform_func = getDataTransfFunc(set, new vector(){ta});
 RES.add(new Gather(PI, set, transform_func, ta));

 }
 } else {

 // compute data transformation function from
 // all source actions to target action

 transform_func = getDataTransfFunc(action_mapping.get(ta),
 new vector(){ta});
 RES.add(new Gather(PI, action_mapping.get(ta),

 transform_func, ta));
 }
 }
 }

 else if (length(action_mapping.get(ta)) = 1) then {

 source_action : Action;
 // get the single action that is associated with ta
 source_action = action_mapping.get(ta).getFirst();

 if (reverse_action_mapping.contains(source_action)) then {
 // add ta to set of actions assoc. with source_action
 reverse_action_mapping.get(source_action).add(ta);
 } else {
 // add a new set of actions assoc. with source_action
 reverse_action_mapping.put(source_action,
 new vector(){ta});
 }
 } else {
 // this case should be caught in the loops above
 exit(-1);
 }
 }

 foreach sa in reverse_action_mapping.keyset() do {
 // FLOW: only one action maps to sa
 if (length(reverse_action_mapping.get(sa)) = 1) then {

 // compute data transformation function from
 // source action to target action
 transform_func = getDataTransfFunc(new vector(){sa},
 reverse_action_mapping.get(sa));

 if (direction(sa) = IN) then
 // for “receives” add FLOW from RI -> PI
 RES.add(new Flow(RI, sa, transform_func,
 reverse_action_mapping.get(sa)));
 else
 // for “sends” add FLOW from PI -> RI
 RES.add(new Flow(PI, sa, transform_func,
 reverse_action_mapping.get(sa)));

 }
 // SCATTER: several target actions map to sa
 else if (length(reverse_action_mapping.get(sa)) > 1) then {
 subset : vector<Action>;
 action_subsets : vector<vector<Action>>;
 // the placement (i.e. control flow) is determined by
 // the target interface (PI in 1st case, RI in 2nd)

// for “receives” add SCATTER from RI -> PI

 if (direction(ta) = IN) then {
 // check, if each run of RI contains all target actions
 if (!actionsInAllRuns(reverse_action_mapping.get(sa), RI)) then {
 foreach run in runs(RI) do {
 subset = getActionsInRun(reverse_action_mapping.get(sa), run);
 if(isActionSetComplete(subset, sa)) then {
 if(!action_subsets.contain(subset)) then
 action_subsets.add(subset);
 } else exit(-1);
 }
 foreach set in action_subsets do {

 // compute data transformation function from
 // source action to target actions subset
 transform_func = getDataTransfFunc(new vector(){sa}, set);
 RES.add(new Scatter(RI, sa, transform_func, set));
 }

 } else {
 // compute data transformation function from

 // source action to all target actions
 transform_func = getDataTransfFunc(new vector(){sa},

reverse_action_mapping.get(sa));
 RES.add(new Scatter(RI, sa, transform_func,

 reverse_action_mapping.get(sa)));
 }
 // for “sends” add SCATTER from PI -> RI
 } else {
 // check, if each run of PI contains all target actions
 if (!actionsInAllRuns(reverse_action_mapping.get(sa), PI)) then {
 foreach run in runs(PI) do {

 subset = getActionsInRun(reverse_action_mapping.get(sa), run);
 if(isActionSetComplete(subset, sa)) then {
 if(!action_subsets.contain(subset)) then

 action_subsets.add(subset);
 } else exit(-1);

 }
 foreach set in action_subsets do {

 // compute data transformation function from
 // source action to target actions subset
 transform_func = getDataTransfFunc(new vector(){sa}, set);
 RES.add(new Scatter(PI, sa, transform_func, set));

 }
 } else {

 // compute data transformation function from
 // source action to all target actions
 transform_func = getDataTransfFunc(new vector(){ta},

reverse_action_mapping.get(sa));
 RES.add(new Scatter(PI, sa, transform_func,

reverse_action_mapping.get(ta)));
 }
 }
 } else {
 // this case should not occur

 exit(-1);
 }
 }

 // looking for actions to HIDE

 foreach a in unused_actions_PI do {
 // only “sends” can be hid in the provided interface
 if (direction(a) = OUT) then
 RES.add(new Hide(PI, a));
 else
 // this case should not occur (handled in first loop)

 exit(-1);
 }

 foreach a in unused_actions_RI do {
 // only “receives” can be hid in the required interface
 if (direction(a) = IN) then
 RES.add(new Hide(RI, a));
 else
 // this case should not occur (handled in second loop)

 exit(-1);
 }

 return RES;

}

getSourceActions:

 // a target action and the source interface
input : TA : Action; SI : Interface;
output : RES : vector<Action>;

{
 // vector to store a set of actions, that all together might
 // be suitable to provide necessary data for TA

 potential_src_actions : vector<Action>;
 // vector to store a set of preconditions or effects

 unified_conditions : vector;

 // the result of a semantic matchmaking
 matching_result : enum{FULL_MATCH, PARTIAL_MATCH, NO_MATCH};

 potential_src_actions = new vector<Action>();

 foreach sa in actions(SI) do {

 // for “receives” only preconditions are of interest
 if (direction(TA) = IN) then {
 // perform matchmaking with TA and sa

 matching_result = match(precond(TA), precond(sa));

 // sa fully matches TA
 if (matching_result = FULL_MATCH) then {

 RES.add(sa);
 }
 // sa partially matches TA
 else if (matching_result = PARTIAL_MATCH) then {
 // add sa to set of potentially matching src. actions

 potential_src_actions.add(sa);
 }
 }
 // for “sends” only effects are of interest
 else {
 // perform matchmaking with TA and sa

 matching_result = match(effects(TA), effects(sa));

 // sa fully matches TA
 if (matching_result = FULL_MATCH) then {

 RES.add(sa);
 }
 // sa partially matches TA
 else if (matching_result = PARTIAL_MATCH) then {
 // add sa to set of potentially matching src. actions

 potential_src_actions.add(sa);
 }
 }
 }

 // compute the union of semantic descriptions
 // (preconditions and/or effects) of potential src. actions
 // and fully matching src. actions (already stored in RES)
 //
 // The following steps ensure, that only a set of actions
 // is returned, which contributes all necessary data to TA.
 // Anyhow, there might be actions in the set that seem to
 // contribute necessary (parts of the) data to TA, but
 // which actually should not be mapped to TA at all.
 // It all depends on the expressiveness and provided detail
 // of the semantic description.
 unified_conditions = semanticUnion(new vector(){RES,

 potential_src_actions});
 if (direction(TA) = IN) then {
 // match TA’s preconditions against this union

 matching_result = match(precond(TA), unified_conditions);
 } else {
 // match TA’s effects against this union

 matching_result = match(effects(TA), unified_conditions);
 }
 // test, if the unified preconditions or effects
 // fully match with TA
 if (matching_result = FULL_MATCH) then {

 RES.add(potential_src_actions);
 }

 // source actions have been found
 if (length(RES) > 0) then {
 return RES;

 }
 // no source actions have been found
 else {
 return null;

 }

}

The SOA revisited for multilateral collaborations

Martin Probst

Hasso-Plattner-Institute for Software Systems Engineering, Potsdam
martin.probst@student.hpi.uni-potsdam.de

Abstract. The Service Oriented Architecture (SOA) is a popular archi-
tectural style that introduces the notion of publishing, discovering and
consuming services. In multilateral collaborations, several participants
take part in choreographies that are not controlled by a single entity
in the system. This paper presents a survey of possible scenarios how
participants publish and discover their services to enter a conversation.

1 Introduction

Service Oriented Architectures (SOA) are by now a widely accepted and used ar-
chitectural approach to the design and implementation of IT systems. In a service
oriented architecture, the system at hand is decomposed into a set of services.
These services are independent, well-defined subsystems that are aligned with
the business use of the services. Services are then published, can be discovered,
and consumed by clients or other participants in the system.

As of today, most SOA implementations are deployed within organizations, as
opposed to inter-organizational deployments, and services follow a basic request
and response pattern. By combining multiple services in so-called Orchestrations,
services can be aggregated to form applications or services of higher value.

This notion of composing services however has limitations. Orchestrations
usually imply a client-server relationship between participants, and have a sin-
gle executing or driving participant, that controls execution. This concept does
not map well to existing business to business processes. Long running, complex
interactions between services, so called Conversations, are executed in many
business to business scenarios. These scenarios typically do not have a single,
executing instance, but are rather conversations between two or more indepen-
dent agents.

A Choreography is the abstract description of a set of conversations. It defines
the set and order of allowed interactions between the participants in these con-
versations. Choreographies are characterized by the lack of a central controlling
instance and therefore a more collaborative approach (cf. [Pel03]).

This paper investigates issues raised by the notion of a multilateral Service
Oriented Architecture. In particular, the question of how participants can pub-
lish, discover and consume interactions in multilateral scenarios is analyzed.

2 Related work

A prerequisite for the work presented in this paper are two important concepts,
service compatibility and semantic web services.

2.1 Service compatibility

Service compatibility is not limited to pure syntactic compatibility (cf. [Mar03]).
Two services are compatible if they can interact in a successful way, where suc-
cessful can be defined as a set of properties. An example set might be the fol-
lowing, while other or more properties are imaginable.

– no deadlocks occur
– the communication protocol between the services matches
– all participants reach a valid terminal state after the interaction
– all services can reach a successful terminal state

Public view An initial definition of service compatibility was the public view,
as introduced in [LRS02]. The public view of a web service is its interface to
other services, the messages it sends or receives and their order in its execution
life time. Public view has not been strictly specified but rather gives an intuitive
understanding of the concept. It has little use in practice as it does not allow for
automated comparison or checking of complex choreographies.

Operating guidelines To address the limitations of the public view concept,
[Mar05] proposes the idea of Operating Guidelines. With operating guidelines, a
web service is seen as an automaton. The states of the automaton represent legal
interaction states of the service, and transitions between the states represent sent
or received messages. By this, the automaton represents all legal behaviours of
the service, and clients that follow the service’s operating guidelines can interact
successfully with the service.

Operating guidelines have the advantage of being relatively easy to gener-
ate from other, more complex models, like Petri nets or BPMN descriptions.
Also, operating guidelines automata can easily be checked for compatibility by
following the automatons state transitions, which is always O(n) relative to the
number of nodes in the automaton. On the other hand they are limited to com-
munication protocols without loops and the automata can get very large for
complex services.

2.2 Semantic web services

The term semantic web service describes a web service that was annotated with
a semantic meaning, so that clients can request a certain operation without actu-
ally specifying a concrete web service implementing it. Various technologies have
been proposed to implement semantic web services (cf. [MPM+04], [dBLK+05],

[AFM+05], [RLK05]). Multilateral collaborations require ways to identify the
semantics of single services, so that participants and/or a service broker can se-
lect services to take part in choreographies while ensuring semantic correctness
(service matchmaking).

3 Choreography Knowledge

This section will investigate four scenarios, in which multiple participants engage
in a conversation. The scenarios have been selected to cover different types of
choreographies by the criterium of choreography knowledge. The term choreog-
raphy knowledge here denotes both the structure of the process implemented by
a certain choreography and the actual identity of participants in the process.

A multilateral collaboration requires the coordination of more than two par-
ticipants. In order to make multilateral collaborations possible, single partici-
pants need to be able to receive messages from multiple other services, possibly
services that were not known to them when the conversation was instantiated.
This capability is sufficient if another participant manages the conversation.
Therefore for a single participant, it is possible to ignore the multilateral nature
of the choreography. If choreography knowledge is optional to some of the par-
ticipants, the overall architecture of a system will be greatly influenced by the
question which participants need to have knowledge of the choreography.

If a participant holds knowledge about the choreography, this knowledge has
to be communicated to other participants or the broker. Also, this choreography
knowledge will have to be adapted to changes in the system, and compatibility
between participants will have to be maintained, thus requiring significantly
’smarter’ participants. The knowledge about a choreography may also be used
to handle error conditions.

The participants that share choreography knowledge will need to communi-
cate about their process models and agree on compatibility. Also, only partici-
pants with choreography knowledge will be able to set up other participants to
take part in the conversation.

Choreography knowledge defines a view on the system. If a participant only
knows its own interface to the system, it has a local view of the whole con-
versation - it does not know about interactions between other participants (cf.
[ZDtH+06]).

Possible multilateral SOA systems can be divided into the following groups
using the criterium of choreography knowledge:

Single participant a single participant holds the choreography knowledge, other
participants have a local view

Global view multiple participants have a global view of the collaboration, i.e.
they know about interactions between participants outside of their local
view.

Participant knowledge participants have a local view of the system, but have
requirements on the identity of their communication partners. They are

aware of the multilateral nature of the conversation, but do not require a
global view.

Participant identity is generally an orthogonal property to the knowledge of
the choreography’s process, but still closely related. A global view of a conver-
sation is only meaningful if the actual participants that communicate can be
identified.

3.1 Scenario I: Marketplace

The first scenario is called Marketplace, because it is actually implemented and
in use today by services such as the Amazon Marketplace. In it, a single par-
ticipant has the choreography knowledge.

A provider, such as an online store, publishes its service, e.g. the process of
selling goods to consumers. The process consists of the selection of goods by a
consumer and shipment of the goods to the consumer (payment is not consid-
ered for the example). This basic service can be extended into a multilateral
conversation if the online store allows other retailers to use its infrastructure,
but still handles the presentation of goods. Other retailers can now register with
the online store for a ’goods provider’ service.

In this scenario, shown in figure 1, one of the participants – the online store
– manages the conversation composition. The other participants, consumers and
retailers, have to be aware that they need to interact with different communica-
tion partners, but they do not need further knowledge of the process.

S
u
p
p
lie

r
S
u
p
p
lie

r

C
u
s
to

m
e
r

A
m

a
z
o
n

S
u
p
p
lie

r

Order sth.

Forward

order

Send

goods

Receive goods

Fig. 1. Amazon Marketplace scenario

The online store transparently handles the conversation and might also act
as a service broker, which is plausible for non-technical reasons. If the online

store defines the rules of the conversation and manages the conversation, it also
carries the responsibility for the technical infrastructure, and would therefore
probably provide a broker. Requests to take part in conversations do not require
any special information beyond the semantic service description and a means to
ensure process compatibility, e.g. an operating guidelines description of the local
interface.

This scenario can easily be extended to contain more complex interactions
between participants or more participant roles. It is also possible to layer the
role of the online store, e.g. to have multiple participants with choreography
knowledge that provide a simple service to the other managing participants. The
important property is that only one participant is concerned with the particular
choreography it manages, and the other participants do not need to know about
the choreography.

3.2 Scenario II: Rent Deposit

The rent deposit scenario describes the case that some participants have par-
ticipant knowledge. It is in that way an extension of the first scenario, as the
single participants do not need to have knowledge of the global process, but only
of their interface.

In this scenario, a landlord wants to rent a flat to a lodger. To make sure he
will receive his rent, he requires the lodger to make a rent deposit with a bank.
The lodger is responsible for the choreography, as the online store was in section
3.1, but the landlord requires that the confirmation of the rent deposit is sent
to him by a bank. This requires an extended description of the service interfaces
in the choreography. Lodger and landlord have to negotiate what a bank is in
their context. A service broker that performs a matchmaking will need to receive
information from the lodger about the required role of the participant, so requests
will consist of the normal service identification plus a semantic identification of
the involved participants.

3.3 Scenario III: Construction Planning

The third scenario extends the second insofar as participants require knowledge
of the full choreography, i.e. a global view.

A client wants to construct a building. She assigns an architect with creating
a construction plan. The architect submits the plan to the building authority and
sends it back to the client afterwards. The client then assigns the construction
work to a construction company. This company is required to ask the build-
ing authority for permission. Both the architect and the client are required to
know about the interaction between the construction company and the building
authority (figure 3).

This scenario requires a way to specify at least parts of the interaction. The
client needs a way to express the interaction behaviour between other partici-
pants. Also, participants need to communicate this knowledge over boundaries,
e.g. the architect has to make sure he communicates with the same building

L
a
n
d
lo

rd
L
o
d
g
e
r B

a
n
k

Request

rent deposit

Order

deposit

confirm

deposit

Receive deposit

confirmation

Fig. 2. Rent Deposit

Architect

C
lie

n
t

("
B

au
h
er

r"
)

Request Plan

Create
Construction plan

Submit for
admission

Send to client

Receive plan

Building Authority

Assign

Check Plan

Construction company

Ask for admission

BuildFile plans

Move in

Fig. 3. Construction planning

authority as the construction company. This knowledge might be represented as
a Let’s dance plan with semantic annotations both for the operations and the
participants (cf. [ZDtH+06]), which will need to be included in requests to a
service broker.

3.4 The role of the service broker

The idea of a service broker contradicts with the concept of a truly multilateral
choreography. If participants in a conversation are completely independent of
each other, and no participant controls execution of the choreography, it is highly
unlikely that one can find a single point where all participants register their
services. However the functionality provided by a service broker, that is service
matchmaking, will still be needed.

The service broker will loose its special position in the architecture and be-
come a service itself. Most likely single participants of a choreography will pro-
vide broker-like functionality as local hubs that allow the discovery of other
participants. Therefore, none of the diagrams depicts an explicit broker.

4 Conclusion and Outlook

The scenarios presented in this paper represent real-world use cases that need to
be addressed by service oriented architectures. Basic technology to describe the
scenarios and communicate them is available, so that combining the technologies
to address the scenarios is possible. But the major hurdle in the adoption of
multilateral choreographies is non-technical, as error handling, responsibility for
process outcome, legal liability etc. are much bigger problems.

4.1 Automated planning

A desirable technical solution would be the fully automated planning of a chore-
ography. In this scenario, a participant would request to take part in a conversa-
tion and supply a semantic description of the choreography to a service broker.
The service broker would then use planning algorithms to find a combination
of the registered services that fulfills the choreography and return the planned
conversation to the client.

While attractive, this scenario is quite unlikely in the near future. The auto-
mated planning is technically very challenging. Also, the existence of one service
broker that knows about all other services is unlikely, as explained in section 3.4,
so there might not be an instance that has sufficient knowledge to do a complete
planning.

A truly automated planning of independent, inter-organizational choreogra-
phies would in the long term have to include all the organizational and legal
features of today’s regular business system. Especially in the areas of error han-
dling and liability solutions would be needed. The ’real world’ system includes an
enormous set of rules, is guarded by the legal system and error and corner cases

are handled by humans. A system trying to emulate this would be a herculean
task.

4.2 Plausible scenarios

A likely scenario in the near future is characterized by Scenario I. Current ser-
vice providers will start to act as both providers and brokers. Well know and
clearly defined choreographies will be published by these providers and other
participants can register to take part in them. But these choreographies will
still be mainly managed by the initial service provider. Another likely scenario
are brokers that provide a set of known choreographies where participants can
register for roles in these well known choreographies.

Bibliography

[AFM+05] R. Akkiraju, J. Farrell, J. Miller, M. Nagarajan, M. Schmidt,
A. Sheth, and K. Verma. Web Service Semantics-WSDL-S. A joint
UGA-IBM Technical Note, 1, 2005.

[dBLK+05] J. de Bruijn, H. Lausen, R. Krummenacher, A. Polleres, L. Pre-
doiu, M. Kifer, and D. Fensel. The Web Service Modeling Language
WSML. WSML Final Draft D, 16, 2005.

[LRS02] F. Leymann, D. Roller, and M.T. Schmidt. Web services and busi-
ness process management. IBM Systems Journal, 41(2):198–211,
2002.

[Mar03] A. Martens. On Compatibility of Web Services. Petri Net Newslet-
ter, 65:12–20, 2003.

[Mar05] Axel Martens. Consistency between Executable and Abstract
Processes. In Proceedings IEEE International Conference on e-
Technology, e-Commerce, and e-Services (EEE 2005), pages 60–67,
Hong Kong, China, March 2005. IEEE Computer Society.

[MPM+04] D. Martin, M. Paolucci, S. McIlraith, M. Burstein, D. McDermott,
D. McGuinness, B. Parsia, T. Payne, M. Sabou, M. Solanki, et al.
Bringing Semantics to Web Services: The OWL-S Approach. Pro-
ceedings of the First International Workshop on Semantic Web Ser-
vices and Web Process Composition (SWSWPC 2004), pages 6–9,
2004.

[Pel03] Chris Peltz. Web services orchestration and choreography. Com-
puter, 36(10):46–52, 2003.

[RLK05] D. Roman, H. Lausen, and U. Keller. Web Service Modeling Ontol-
ogy (WSMO). WSMO Final Draft April, 13, 2005.

[ZDtH+06] Johannes Maria Zaha, Marlon Dumas, Arthur ter Hofstede, Alistair
Barros, and Gero Decker. Service Interaction Modeling: Bridging
Global and Local Views. In Proceedings 10th IEEE International
EDOC Conference (EDOC 2006), Hong Kong, Oct 2006.

Bridging Global and Local Interaction Models

Using Petri Nets: Generating Interface

Processes out of Interaction Nets

Silvan T. Golega

Hasso-Plattner-Institut, Universität Potsdam, Germany
silvan.golega@hpi.uni-potsdam.de

Abstract. In a Service-Oriented Architecture (SOA), systems interact
as independent units through message exchange without the need of cen-
tral orchestration. Each participant takes care of the parts it contributes
to the overall process. To avoid compatibility conflicts, global service in-
teraction models, so-called choreographies, describe a bird’s eye view of
the interactions in highly distributed systems. Control flow constraints of
the global view have to be accomplished by the local interface processes.
To fill the gap between the global and the local view this paper introduces
an abstract syntax for choreographies based on Petri nets and two algo-
rithms capable of generating interface processes out of interaction nets
considering all the control flow constraints of the global choreography.

1 Introduction

Various shifts can be observed in the area of collaborating systems. Services
get more and more flexibly interchangeable and recombineable. Descriptions of
semantics and process interfaces enforce these trends. The newest shift points
to a move from centrally orchestrated towards highly distributed services. The
combination of various local interface processes leads to compatibility problems.
Many parties argue therefore to first create a global service interaction model, i.e.
a choreography. From this global model local models and behavioral interfaces
can be derived that are compatible automatically. However, the derivation of
local models leaving intact all constraints that are expressed in the global model
is not trivial.

This work aims at achieving various contributions in this area to fill the gap
between global and local views. The paper introduces messages and participant
roles as an extension to Petri nets. This extension enables Petri nets to model
interactions between various business partners and to be used as a choreogra-
phy language. Furthermore, a definition of strict enforceability is presented and
used in a provable algorithm that derives local interface processes from strictly
enforceable interaction nets. The last contribution is an algorithm for the gen-
eration of interface processes out of enforceable interaction nets.

The outline of the paper is the following. The next Chapter details prereq-
uisites that are needed for the generation algorithms. It introduces the above

mentioned Petri net extensions as well as the terms enforceability and strict en-
forceability. Chapter 3 then describes the first of two algorithms. This algorithm
generates interconnected local Petri nets out of a global interaction Petri nets.
It is called service-oriented approach, because the overall control flow is not ex-
pressed in each local interface process. Instead the combination of the different
participants enforces the execution constraints of the global model. It is valid
for strictly enforceable nets. The second algorithm is called the process-oriented
approach. Its adaptability for enforceable nets and its up- and downsides are
discussed in chapter 4. A comparison of both algorithms, related work and an
outlook to this work will be given in Chapter 5.

2 Background

2.1 Petri Nets in Distributed Systems

This chapter outlines how Petri nets can be used for choreographies. It motivates
an extension that introduces participant roles and messages into Petri nets.

Petri nets[1] are a mathematical model for parallel systems with a well estab-
lished graphical representation. They provide a strong mathematical background
that has been investigated during several decades of research. Much work has
been done to create a basis for reasoning, which could be useful in the context
of choreographies. The Petri nets’ ability to represent parallel systems and their
simple mathematical definition suggest using them for automating purposes in
the area of net transformations.

Unlike other process descriptions, choreographies do not display dependencies
between actions, but control flow between interactions. Two main reasons for
using choreographies are providing an overview of the communication between
different roles and the derivation of local interface processes. The decision which
activities have to be done to produce and process messages are totally left to
the concrete participant. The participant is only required to be compatible and
conform with the choreography. Graphical choreography languages like ISDL
[3] or Let’s Dance [2] introduce nodes with the semantics of messages and are
lacking elements for activities. They have a strong focus on participant roles
including them directly into their graphs.

The following paragraphs outline how these principles and foci on messages
and participants can be applied to Petri nets.

“Original” Petri nets are sometimes considered to include arc weights and
place capacities. This paper does not take these extensions into account. How-
ever, with some minor adaptions the presented algorithms should be usable for
this class of Petri nets, too. Here a Petri net consists of the following quadruple
(P, T, F, M0)

– P , a finite, non-empty set of places;
– T , a finite, non-empty set of transitions, where P and T are disjoint:

P ∩ T = ∅;
– F , a set of arcs known as a flow relation, where no arc in F must connect

two places or two transitions: F ⊆ (P × T) ∪ (T × P) ;
– M0 : P → N, an initial marking, where for each place p ∈ P , there are

n ∈ N tokens.

Two changes are evident compared to classical Petri nets. The first one is to
interpret the transitions in the set T as interactions. The second is to introduce
participant roles to the model. This has to be done separately for the global
interaction model and for the local interface processes. The global interaction
net will therefore be the tuple (P, T, F, M0, R, σ, ρ), where

– R is a finite, non-empty set of participant roles, disjoint from P and disjoint
from T : R ∩ T = R ∩ P = ∅;

– σ : T → R is the sender relation, assigning each interaction t ∈ T an
participant role σ(t) =: r ∈ R;

– ρ : T → R is the receiver relation, assigning each interaction t ∈ T an
participant role ρ(t) =: r ∈ R, where σ(t) (= ρ(t).

To be able to provide an overview picture of the collaboration between the
separate local interface processes yet another tuple will be introduced. The tran-
sitions here get the semantics of sending or receiving activities, a place between
them symbolizes message exchange when containing a token. Each transition is
mapped to one participant role, the executor of this transition. The overview net
for the local interface processes therefore is the tuple (P, T, F, M0, R, φ,), where

– R again is a finite, non-empty set of participant roles, disjoint from P and
disjoint from T : R ∩ T = R ∩ P = ∅;

– Φ is the executor relation, assigning each interaction t ∈ T an participant
role r ∈ R: Φ ⊂ (T × R)

Fig. 1. A global interaction net and its connected set of local interface processes

A graphical notation for these net formalizations following the graphical syn-
tax of Let’s Dance for the interaction model and the concept of having swim lanes
for each local interface process is illustrated in figure 1.

2.2 Enforceability

A global interaction model is locally enforceable if there exists a set of local
interface processes that only contain interactions from the global model and
collectively enforce all constraints from the global model. [4] provides a formal
definition for enforceability. Goal of this work is to find an algorithm that derives
a set of local interface processes from a global interaction model if it is enforce-
able. The output of an application of the presented algorithms to unenforceable
interaction models is undefined and most probably not meaningful.

However, it seems to make sense to introduce another, a stricter enforceability
function for the net (P, T, F, M0, R, σ, ρ).
Let preT (Ts) ⊆ P be the set of all places preceding a set of transitions Ts ⊆ T :
p ∈ preT (Ts) ⇒ ∃t ∈ Ts, such that (p, t) ∈ F
Let preP (Ps) ⊆ T be the set of all transitions preceding a set of places Ps ⊆ P :
t ∈ preP (Ps) ⇒ ∃p ∈ Ps, such that (t, p) ∈ F
Then preP (preT ({t})), t ∈ T is the set of all transitions directly preceding t.
A global model is strictly enforceable if and only if all messages are to be sent
by a participant that was involved either as sender or as recipient in all directly
preceding interactions, or formally speaking a global model is strictly enforceable
iff ∀t ∈ T, f ∈ T : f ∈ preP (preT ({t})) ⇒ σ(t) ∈ {σ(f)} ∪ {ρ(f)}

Fig. 2. An enforceable net and its transformation to a strictly enforceable net

Figure 2 shows an example of an enforceable but not strictly enforceable
global net on the left. It is not strictly enforceable, because the sender C of mes-
sage three is not directly involved in all directly preceding interactions, namely
message one, neither as receiver nor as sender. However, the net is enforceable:
Whenever C receives message two it knows from the structure of the net that
message one must have been sent, too, and can send message three.

As strictly enforceable nets are easier to handle under certain aspects, it is
sometimes desirable to transform enforceable but not strictly enforceable into

strictly enforceable nets. Often this can be done by overspecification as also
displayed in figure 2. This paper does not outline how this transformation can
be achieved, it is left subject to future work.

3 Service-Oriented Approach

Given a certain interaction net, there are basically several solutions thinkable
for conforming interaction processes. They differ in terms of their representation
of the control flow and their degree of overspecification. This chapter and the
following depicts two rather different approaches. The first one, called the service-
oriented approach, hides the control flow behind the overall structure of the
collaborating local interfaces leaving open all degrees of freedom in execution.
The second approach, discussed in the following section 4, limits these liberties by
adding further constraints, but makes the complete control flow visible on each
participant’s runtime environment. It is therefore called the process-oriented
approach. There are several other solutions possible, but these two have been
valued to offer the best tradeoff between their strengths and weaknesses. For
more details see their comparison in the conclusion, chapter 5.1.

Each of these solutions can be achieved using different algorithms. Three dif-
ferent techniques will be mentioned here, however only the first will be described
in the following chapter 3.1. The “multiply and cut” technique duplicates the
whole interaction net to each participant’s interface process, later connects them
and then takes away all spare elements. “Distribute and add” spreads all ele-
ments of the choreography to the swim lane of its executor leaving connections
intact and then adds elements that are needed to fulfill the control flow condi-
tions. The third modus operandi “tracing paths” simulates all possible execution
paths of the choreography, noting down all possible execution traces, and later
connecting these interface processes. “Multiply and cut” has been chosen to be
discussed here in more detail, because it seems to imply the less complex steps.

3.1 Algorithm

This chapter describes an algorithm to generate the service-oriented solution
for local interface processes. Its name results from the fact that the distinct
receive and send transitions which one single participant role executes are not
necessarily connected through control flow. Instead receive transitions just wait
to get enabled statelessly and without directly belonging to a process instance.
Receive and send transitions are called receives and sends for easier readability
in this paper. An example for a set of local service-oriented interface processes
and their global interaction net is given in figure 3.

The first step of the algorithm is to copy the whole interaction net into
each swim lane. This is done in lines 6 - 28 in listing 1. All transitions as well
as their incoming and outgoing flows are only copied, if their participant role
corresponds either to their sender or their receiver participant. In the next step

places are added between the sending and receiving transitions representing the
communication channels between the local interfaces (lines 31-37).

As some transitions and alternatives have been removed in the local processes
some of the transitions might not get enabled when the removed way is chosen.
Due to the strict enforceability this problem can only appear to receives, not
to sends. The solution handles this by removing all incoming flow to receives
except of communication channels. Receives will get enabled only by receiving
a message. This is achieved through the if-clause in line 25. The model for local
interface processes described in chapter 2.1 defines the set Φ only for transition-
participant role pairs. Line 17 copies these pairs to the new executor relation.
(Pn, Tn, Fn, M0,n, R, Φn) defines the the new set of local interface processes that
are described by the interaction net (P, T, F, M0, R, σ, ρ).

The proof for validity of this algorithm will not be presented in greater detail
here, but a sketch of it: Because the interaction net is strictly enforceable all
control flow constraints are expressed directly in the structure of the net. None
of the direct predecessors of a send transition were removed – again because of
the net’s property of strict enforceability. So all control flow logic that enables
sends remains after the generation process. A receives is enabled directly by its
associated send. As there are only receive and send transitions all logic is still
expressed in the derived net.

3.2 Evaluation

The strong advantage of this algorithm is its simpleness as well in the gener-
erating process as in its result. The algorithm produces almost no overhead (i.e.
newly introduced elements that cannot be found in the global interaction net)
and leads to very simple interface nets. However on the local side there are no
real connected local process. Several parts of the process remain without any
connection between them in a local view, only a bird’s eye view reveals those
control flow dependencies. This leads to the fact that without further knowl-
edge of the above lying structure one can revice see if a process finished on the
local side only from looking into the local interface process’s runtime state. Fur-
thermore it is only valid for strictly enforceable nets. Non-strictly enforceable
nets like in figure 2 have a need of further supervison of implicit control flow
dependencies.

4 Process-Oriented Approach

4.1 Algorithm

This chapter presents an algorithm for enforceable interaction nets that leaves
the control flow dependencies between different participant roles intact and vis-
ible on each client’s swim lane. An example for a derived model where this
algorithm was used can be found in figure 4. Its respective interaction net is the
same as displayed in figure 3.

Just as in the service-oriented approach the algorithm copies the whole in-
teraction net into each swim lane. This is done in lines 6-28 in listing 2. Doing
this the sender and receiver relations σ and ρ are removed, but this time all
transitions are copied into the swimlanes. Transitions that are neither sends nor
receives become no operation transitions, so-called nops, which do not carry any
interaction semantics but which are needed for the control flow. The next step
adds places between the sending and receiving transitions (lines 31-38). Tokens
interchanged in these communication places represent messages between differ-
ent participant roles.

An alternative algorithm described in the next section 4.2 would stop here.
But several constraints of the global model now are not expressed in the local
models anymore. E.g. in alternative execution paths, if one way begins with a
nop, the other with a receive, the runtime environment will have no information if
to trigger the enabled nop or if still to wait for incoming messages on the receive
path alternatively. The proposed solution is to introduce so called milestone
edges that inhibit the firing of nops until it is clear from a later message that
they should fire. The algorithm to add these milestone edges is shown in listing
3.

4.2 Evaluation

The big advantages of this solution are its aptitude for all enforceable nets and
the clearly visible processes in each local swim lane. If the local net allows it, ter-
mination of local execution can be revised easily with this solution. The negative
consequence is the amount of overhead that is produced in the local interface
processes. Unfortunately, the correctness of the algorithm was not yet proven
for all enforceable nets, although it seems promising. One possible downside can
be seen in the introduction of nops and milestone edges that have no direct
counterpart in workflow nets.

To face the negative sides of this algorithm - the overhead and the intro-
duction of new elements - several variants of the algorithm are possible. Two of
them are mentioned here. One possibility is to skip the last step, the adding of
milestone edges and duplicated alternative nops. The net then looses a big part
of its overhead but also its validity for enforceable, non-strictly enforceable nets.
However a supervisor in knowledge of the choreography and its implicit control
dependencies could use this simplified version for non-strictly enforceable nets,
too, if it itself controls triggering of the nop transitions.

The second alternative consists in duplicating receives that follow nops to all
alternative branches to avoid the introduction of milestone edges. This rather
complex algorithm will add a big amount of overhead to the net. The three
variants of the process-oriented net are compared in table 1.

5 Conclusion and Related work

This last chapter puts the obtained concepts into a broader context. The next
section compares the two mentioned generation approaches among each other,

Table 1. Comparison between different approaches to generate process-oriented inter-
face processes

overhead
new elements

duplicate
validity

produced transitions
no

none none no
strictly en-

action forceable nets

duplication very
none yes

enforceable
of receives high nets

adding of
high

nop - transitions
no

enforceable
milestone edges milestone edges nets

section 5.2 lists related work and the concluding paragraphs outline possible
future work.

5.1 Comparison of Approaches

The two solutions presented in the previous chapters feature different qualities.
The service-oriented one appears to be adequate in asynchronous environments,
where revisable termination states are not prioritized. It has the strong conve-
nience of adding only a minimum of overhead to the local processes, does not
introduce new elements, and does not add unnecessary control flow that would
lead to overspecification. Unfortunately, this leads to the consequence that this
approach is only capable of serving strictly enforceable nets. Enforceable but not
strictly enforceable nets need an additional instance of execution level that lies
over the Petri net blocking and triggering certain enabled transitions.

The process-based approach on the other hand can use overspecifiation to
enforce the constraints of the global model in the local model. If it does, overhead
in the local models augments, but in an exchange derived local models are valid
from all enforceable interaction nets, being process-oriented and enabling certain
additional possibilities like the check of the reach of a defined termination state.
Table 2 provides a comparison of the two algorithms.

5.2 Related Work

In [5] a similar approach to derive local from global models is presented. Its
algorithm is based on Let’s Dance as choreography language. As the algorithms
presented here produce standard Petri nets for each local participant, they have
a slight advantage over the results in the very young language Let’s Dance.
However, the authors have formalized the Let’s Dance control flow elements using
π-calculus and thereby created a basis for intercompatibility and executability.

Paolo Traverso et al. provide in [6] a rather different process model where
global and local views are developed hand in hand instead of generating one out

Table 2. Comparison between the the two algorithms that produce service-oriented
and process-oriented interface processes

local revisable produces new
coverage

interface termination overhead elements
service-oriented. loosely

no small no
strictly

interface coupled services enforceable nets

process-oriented. one
yes big yes

enforceable nets
interface process (not yet proven)

of the other. This way, compatibility and conformance issues are meant to be
minimized. Nevertheless, several steps in this approach could be supported by
automation and the presented algorithms could help a choreography designer to
accomplish his work.

5.3 Outlook

Several possible extensions to this work are suggested in the previous chapters.
This section tries to summarize them and to provide an outlook. Future work
might include to find an algorithm that automates the generation of strictly en-
forceable nets out of any enforceable net. While this challenge is nontrivial, it
would enable the service-oriented solution to be usable for any enforceable inter-
action net without the necessity to add further implicit execution constraints.
Until now the process-oriented approach lacks of a proof for comprehensive va-
lidity for all possible interaction nets. This proof will be necessary to base further
work on it. A future prototype implementation of an execution environment for
the suggested Petri net extensions and for the presented algorithms will ease
further research work in this field. However, by providing the algorithms in this
paper a basis was founded contributing the first step to close the gap between
global and local interaction models.

References

[1] C.A. Petri: Kommunikation mit Automaten. Bonn: Institut für Instrumentelle
Mathematik, Schriften des IIM Nr. 2, 1962, Second Edition:, New York: Griffiss
Air Force Base, Technical Report RADC-TR-65–377, Vol.1, 1966, Pages: Suppl. 1,
English translation.

[2] J.M. Zaha, A. Barros, M. Dumas, A. ter Hofstede: Let’s Dance: A Language for
Service Behavior Modeling. Technical Report FIT-2006, Faculty of IT, Queensland
University of Technology, http://servicechoreographies.com

[3] Interaction System Design Language. Architecture and Services of Network Appli-
cations Group at the University of Twente, http://isdl.ctit.utwente.nl

[4] Artem Polyvyanyy, Bridging Global and Local Interaction Models Using Petri Nets:
Enforceability. Potsdam: Hasso-Plattner-Institute for IT Systems Engineering, to ap-
pear.

[5] J. M. Zaha, M. Dumas, A. ter Hofstede, A. Barros, G. Decker: Service Interaction
Modeling: Bridging Global and Local Views. In Proceedings of the 10th International
EDOC Conference, Hong Kong, 2006

[6] Paolo Traverso et al., Supporting the Negotiation between Global and Local Busi-
ness Requirements in Service Oriented Development. http://astroproject.org/

Fig. 3. A global interaction net an its service-oriented local interface processes

Fig. 4. Set of process-oriented local interface processes

Algorithm 1 Generating Service-Oriented Interface Processes
1: Given is an interaction Petri net (P, T, F, M0, R, σ, ρ),
2: the empty stets Φ, Φn, Pn, Tn, Fn, M0,n, TS, TR = ∅
3: and the function getOriginal : Pn ∪ Tn → P ∪ T
4:
5: // Copy elements for each swimlane in new sets
6: for all role ∈ R do

7: for all place ∈ P do

8: placerole := new()
9: Pn := Pn ∪ {placerole}

10: M0,n(placerole) := M0(place)
11: getOriginal(placerole) := place

12: Φ := Φ ∪ {(placerole, role)}
13: for all transition ∈ T do

14: if σ(transition) = role ∨ ρ(transition) = role then

15: transitionrole := new()
16: // add executor relation
17: Φn := Φn ∪ {(transitionrole, role)}
18: getOriginal(transitionrole) := transition
19: if σ(transition) = role then

20: TS := TS ∪ {transitionrole} // send transitions
21: else if ρ(transition) = role then

22: TR := TR ∪ {transitionrole} // receive transitions
23: for all p ∈ Pn, t ∈ Tn, where (getOriginal(p), getOriginal(t)) ∈ F ∧ (p, role) ∈

Φ ∧ (t, role) ∈ Φn do

24: // do only add flows pointing to sends, not to receives
25: if t ∈ TS then

26: Fn := Fn ∪ {(p, t)}
27: for all p ∈ Pn, t ∈ Tn, where (getOriginal(t); getOriginal(p)) ∈ F ∧ (p, role) ∈

Φ ∧ (t, role) ∈ Φn do

28: Fn := Fn ∪ {(t, p)}
29:
30: // add communication places and find sends/receives
31: for all (send, sender) ∈ Φn, where send ∈ TS ∧ σ(getOriginal(send)) = sender

do

32: for all (receive, receiver) ∈ Φn, where receive ∈ TR ∧
ρ(getOriginal(receive)) = receiver do

33: if getOriginal(send) = getOriginal(receive)∧ sender '= receiver then

34: placesend := new()
35: Pn := Pn ∪ {placesend}
36: Fn := Fn ∪ {(send, placesend), (placesend, receive)}
37: M0,n(placesend) := 0
38:
39: (Pn, Tn, Fn, M0,n, R, Φn) holds the elements of a set of local interface processes

consistent with (P, T, F, M0, R, σ, ρ)

Algorithm 2 Generating Process-Oriented Interface Processes
1: Given is an interaction Petri net (P, T, F, M0, R, σ, ρ),
2: the empty stets Φ, Φn, Pn, Tn, Fn, M0,n, TS, TR, TN , PI = ∅
3: and the function getOriginal : Pn ∪ Tn → P ∪ T
4:
5: // Copy elements for each swimlane in new sets
6: for all role ∈ R do

7: for all place ∈ P do

8: placerole := new()
9: Pn := Pn ∪ {placerole}

10: M0,n(placerole) := M0(place)
11: getOriginal(placerole) := place

12: Φ := Φ ∪ {(placerole, role)}
13: for all transition ∈ T do

14: transitionrole := new()
15: Tn := Tn ∪ {transitionrole}
16: // add executor relation
17: Φn := Φn ∪ {(transitionrole, role)}
18: getOriginal(transitionrole) := transition
19: if σ(transition) = role then

20: TS := TS ∪ {transitionrole} // send transitions
21: else if ρ(transition) = role then

22: TR := TR ∪ {transitionrole} // receive transitions
23: else

24: TN := TN ∪ {transition} // nop transitions
25: for all p ∈ Pn, t ∈ Tn, where (getOriginal(p), getOriginal(t)) ∈ F ∧ (p, role) ∈

Φ ∧ (t, role) ∈ Φn do

26: Fn := Fn ∪ {(p, t)}
27: for all p ∈ Pn, t ∈ Tn, where (getOriginal(t); getOriginal(p)) ∈ F ∧ (p, role) ∈

Φ ∧ (t, role) ∈ Φn do

28: Fn := Fn ∪ {(t, p)}
29:
30: // add communication places and find sends/receives
31: for all (send, sender) ∈ Φn, where send ∈ TS ∧ σ(getOriginal(send)) = sender

do

32: for all (receive, receiver) ∈ Φn, where receive ∈ TR ∧
ρ(getOriginal(receive)) = receiver do

33: if getOriginal(send) = getOriginal(receive)∧ sender '= receiver then

34: placesend := new()
35: Pn := Pn ∪ {placesend}
36: Fn := Fn ∪ {(send, placesend), (placesend, receive)}
37: M0,n(placesend) := 0
38: PI := PI ∪ {placesend}
39:
40: addMilestoneEdges()
41:
42: (Pn, Tn, Fn, M0,n, R, Φn) holds the elements of a set of local interface processes

consistent with (P, T, F, M0, R, σ, ρ)

Algorithm 3 Adding milestone edges to the process-oriented interface processes
1: function addMilestoneEdges()
2: // for each nop transition
3: for all nop ∈ TN do

4: returnV alue := addMilestoneRecursively(nop, nop)
5:
6: // remove previous nops and their incoming and outgoing flow if milestones have

been added.
7: if returnV alue = true then

8: for all flow = (transition, place) ∈ Fn, transition = nop do

9: Fn := Fn\{flow}
10: for all flow = (place, transition) ∈ Fn, transition = nop do

11: Fn := Fn\{flow}
12: Tn := Tn\{nop}
13: end function
14:
15: // for simplicity this algorithm does not cover recursive loops. In an implementation

they have to be avoided.
16: function addMilestoneRecursively(nop1, nop2)
17: returnValue = false
18: // for each place that follows nop2

19: for all (t, place) ∈ F, t = nop2 do

20: // for each transition following that place
21: for all (p, transition) ∈ F, p = place do

22: // if transition is receive, add a milstone edge
23: if transition ∈ TR then

24: addMilestoneEdge(nop1, transition)
25: returnV alue := true

26: // if transition is nop, follow the path recursively
27: if transition ∈ TN then

28: r := addMilestoneRecursively(nop1, transition)
29: if r = true then

30: returnV alue := true
31: return returnV alue

32: end function
33:
34: function addMilestoneEdge(nop, receive)
35: // get message place
36: for all (place, transition) ∈ Fn, transition = receive, place ∈ PI do

37: // duplicate place
38: nopreceive := new()
39: T := T ∪ {nopreceive}
40: // add milestone edge
41: Fn := Fn ∪ {(nopreceive, place), (place, nopreceive)}
42: // duplicate existing flow
43: for all (t, p) ∈ Fn, t = nop do

44: Fn := Fn ∪ {(nopreceive, p)}
45: for all (p, t) ∈ Fn, t = nop do

46: Fn := Fn ∪ {(p, nopreceive)}
47: end function

Bridging Global and Local Interaction Models

Using Petri Nets: Enforceability

Artem Polyvyanyy

Hasso-Plattner-Institute for IT Systems Engineering at the University of Potsdam
D-14482 Potsdam, Germany

Artem.Polyvyanyy@student.hpi.uni-potsdam.de

Abstract. Service choreographies allow the derivation of new systems at a low
cost. A conversational service consists of granular services that collaborate
collectively through message passing interactions to reach a desired final state.
A service choreography can be defined in a global view interaction model. Such
a model captures all inter-service interaction constraints. Unfortunately, global
models may capture behavioral constraints that can not be enforced locally – in
local interaction models. These global models are referred to as locally
unenforceable. In this paper we survey an enforceability property of global
interaction models; in particular we aim at a formal definition of enforceability.

1. Introduction

Service Oriented Architecture (SOA) provides us with the view on the distributed
system development. The system is designed as one composed of individual services
run by individual businesses [1]. The potential of this approach is hidden in the
numerous compositions that allow reuse of existing services. Further, services might
collaborate collectively through message exchange to support inter-service data flows
and the control flow of the combined service. Each service, in such an environment,
can be seen as the entity exposing its public interface, including messages expected
from and returned to the global environment. Such an interface might be a simple
one-way message passing, request-response pattern or theoretically form patterns of
any complexity. The service choreography is therefore a set of involved partner
services with interface matching to denote message source and message destination
services.

On a high abstraction level, an interaction model sets the constraints on the
message exchange order between interaction participants: “A choreography defines
the sequence and conditions under which multiple cooperating independent agents
exchange messages in order to perform a task to achieve a goal state.” [8]. In our
work we assume that we already posses an interaction model, abstracting from its
derivation method, and will solely concentrate on the study of its properties, in
particular the enforceability property.

In an interaction (or choreography) model, interactions are described from the
viewpoint of an ideal observer who oversees all interactions between a set of services

2 Artem Polyvyanyy

[1]. Such a model subsumes the global knowledge about all possible conversations
(choreography instances). We will refer to such a model as a global model. On the
other hand, each party participating in the choreography supervises its own interaction
behavior. This behavior can as well be captured in the interaction model. We will
refer to such a model as a local model. Local models focus on the perspective of a
particular service, capturing only those interactions that directly involve it. A possible
usage scenario is one where global models are produced by analysts to agree on
interaction scenarios from a global perspective, while local models are produced
during system design and handed on to implementers of particular services [1].

Now, consider the execution of the conversational service. Service conversation
should fit into the global interaction model. Conversational service execution is, thus,
an execution of individual services with constraints on inter-service interactions
ordering. However, it turns out that not all global models can be mapped into local
ones in such a way that the resulting local models satisfy the following two
conditions: (i) they contain only interactions described in the global model; and (ii)
they are able to collectively enforce all the constraints expressed in the global model.
In case when these conditions do not hold, this means, that in order to ensure all the
constraints of the global model there should exist an external component that tracks
execution for conformance with the global interaction model.

Two conditions presented in a previous passage subdivide a set of all global
interaction models into two classes – those for which these conditions hold, and those
for which they do not. Fulfillment of these two conditions would mean that execution
of such choreography can be reduced to simultaneous execution of the participating
services. Such global interaction models are called locally enforceable, as participant
services can locally enforce all the constraints of the global model through the
constraints expressed in their local models.

In this paper we will study the local enforceability property of global interaction
models. In particular, we will derive the formal definition of local enforceability. In
order to complete this task we will first define an abstract syntax for interaction
models. We will then use this syntax to reason on the enforceability property. Two
approaches to automated local model composition for global model derivation will be
presented, assuming synchronous and asynchronous interactions.

2. Interaction Petri Net

In this section we will present an abstract syntax suited for interaction modeling.
Several interaction modeling languages already exist, among them ISDL [6], WS-
CDL [3] or Let’s dance [5]. However, we would like interaction modeling language to
have its equivalent mathematical representation to allow formal statements about
interaction model properties.

As a starting point we will informally define an abstract interaction model. An
interaction model consists of a set of interrelated service interactions corresponding to
message exchanges. At the lowest level of abstraction, an interaction is composed of a
message sending action and a message receipt action (referred to as communication

Bridging Global and Local Interaction Models Using Petri Nets: Enforceability 3

actions). Message content is regulated by a message type. A communication action is
performed by an actor playing a role.

As the next step we can extract the following choreography modeling concepts as
interaction, interaction participant role, exchange message type and concept
associations like interaction sender role, interaction recipient role, type of the message
exchanged in a single interaction.

A Petri net [7] (also known as a place/transition net or P/T net) is the mathematical
representations of discrete distributed systems. Petri nets are well suited for modeling
the concurrent behavior of distributed systems, which is exactly the environment of
service interactions. Thus, we would like to extend classical Petri nets in such a way
to incorporate interaction modeling concepts and associations. Numerous Petri net
extensions exist: colored Petri nets, time and hierarchy extension. We would like to
derive our own extension – an interaction Petri net (IPN).

A classical Petri net is a quadruple ()MFTP ,,, , where:

• P , is a finite set of places;

• T , is a finite set of transitions ()Ø=∩TP ;

• F , is a set of arcs known as a flow relation. The set F is subject to the constraint

that no arc may connect two places or two transitions – () ()PTTPF ×∪×⊆ ;

• Ν→PM : , is an initial marking, where for each place Pp ∈ , there are Ν∈pn

tokens.

With all the add-ons an interaction Petri net becomes a nonuple

()τρσ ,,,,,,,, MTRFIP , where:

• P , is a finite set of places;
• I , is a finite set of interaction occurrences, analogue of classical Petri net

transitions ()Ø=∩ IP ;

• F , is a set of arcs known as a flow relation – () ()PIIPF ×∪×⊆ ;

• R , is a finite set of participant roles;
• T , is a finite set of message types;
• Ν→PM : , is an initial marking;

• RI →:σ , is a send function, which assigns each interaction occurrence Ii ∈ a
sender participant role Rr ∈ ;

• RI →:ρ , is a receive function, which assigns each interaction occurrence Ii ∈

a receiver participant role Rr ∈ ;
• TI →:τ , is a message type assignment function, which assigns each interaction

occurrence Ii ∈ a message type Tt ∈ of the message been exchanged.

Now, in the IPN, transitions are replaced by interaction occurrences. In order to be
able to define sender, receiver and message type used for every single interaction the
corresponding functions ρσ , and τ are used.

If for () 2121 ,, iiIIii ≠×∈ holds that)()(21 ii σσ = – sender roles are equal,

)()(21 ii ρρ = – receiver roles are equal and)()(21 ii ττ = – exchanged message types

are equal, then the two interaction occurrences
1i and

2i belong to the same

4 Artem Polyvyanyy

interaction model. Two interaction instances, i.e. two concrete message exchanges,
are related to an interaction model by considering the sender, receiver and message
type. However, interaction instances can only be related to one out of a set of
interaction occurrences by also considering the relationship to other interaction
instances.

The dynamic behavior of the IPN is modeled similar as in Petri net – by tokens.
Places may contain tokens, which may move by firing transitions (interactions).
Interactions can only fire if they are enabled. An interaction is enabled if each of the
input places contains tokens. An enabled interaction may fire (take place) and thereby
consumes the tokens from the input places and produces tokens for the output places.
A conversation finishes when no more enabled interactions exist.

3. Automated Composition of Local Interaction Models

IPNs suit well for defining both – local and global interaction models. In a common
usage scenario each granular service possesses its own local interaction model. It is
explicitly present in the service implementation and can be seen as the service
interface constraint model. Further, in this paper, we will refer to a sample set of local
interaction models { }41 ,, bbB != shown in Figure 1.

Fig. 1. Sample set of local interaction models

Here, we have introduced a graphical notation for the interaction models.
Communication actions are represented by non-regular pentagons that are juxtaposed
to form a rectangle denoting a single interaction. From left to right first comes the
send action, then the receive action. A role of an actor performing a communication
action is noted inside of a pentagon. The message type exchanged is noted in the right
bottom corner of the interaction rectangle. In case of local interaction models an
additional information on participant role for which this interaction model is
constructed is required.

Let () BMTRFIPb bbbbbbbbb ∈= τρσ ,,,,,,,, , be a local model. Then function

RB →:µ assigns local model b a participant role Rr ∈ for which this interaction

model is constructed. ririIirb bbb =∨=∈∀!=)()(:)(ρσµ . We will extend our

Bridging Global and Local Interaction Models Using Petri Nets: Enforceability 5

sample from Figure 1 by defining µ function for each local model from set B :

Ab =)(1µ , Bb =)(2µ , Cb =)(3µ and Db =)(4µ .

At the same time, a global model is constructed abstracting from existing local
models. It is possible to take into consideration existing local models while modeling
the global model, but the primary force that drives the process is the requirement to
achieve a final state. You, as a modeler of a global model, define interactions and
their ordering constraints that should bring you to the final state. Let us consider a
global model shown in Figure 2 that consists of interactions present in the set of local
models – B .

Fig. 2. Sample global interaction model

It is now a question whether this global model is enforceable. What makes this
model challenging is the conversation scenario that starts with interaction between
actors in roles A and B. Though, afterwards the interaction between actors in roles C
and D is enabled, locally this becomes clear in the local model for role C after
interaction between actors in roles B and C with the message type t3 will happen.
However, in order to conclude that this model is enforceable we should be able to
map this global model on a set of local models so that all the global constraints will be
locally preserved. Let us assume that such set of local models is the one presented in
Figure 1. The question now becomes how to ensure that all the constraints are locally
preserved in the proposed set. In order to be able to answer this question we propose
to first take a look into automated local model composition. In a proposed setup it is
possible to derive mechanisms for deterministic local models composition.
Afterwards, the composed model can be checked to ensure that it preserves all the
constraints of the global model.

Further, we will propose two approaches for automated local interaction models
composition.

3.1. Global Asynchronous Interaction Model

An interaction is a kind of distributed action that occurs as two or more objects having
an effect upon one another. It is therefore intuitive to model interaction as
asynchronous event of sending and receiving a message action. Interactions might
happen between two services of some role with matching interfaces (sender, receiver
roles and message type used for interaction must match). A straight forward solution
to local models composition is joining matching interfaces through an intermediate
place which denotes a state of a message sent by the sender but not yet received by

6 Artem Polyvyanyy

the recipient. The visualization of such a composition for local models
1b and

2b

from our sample set B is shown in Figure 3.

Fig. 3. Sample asynchronous local interaction models composition

Additional places should be created for each matching interface interaction
occurrences. Also, additional flow relation from all communicating interaction
occurrences of the sender local model role to the additional place, and from the
additional place to all communicating interaction occurrences of the receiver local
model role should be constructed. This procedure can be formalized and can be given
in a form of an algorithm.

For { } +Ν∈nbb n ,,,1 ! , where ()iiiiiiiiii MTRFIPb τρσ ,,,,,,,,= is a local IPN

such that:

• Ø:,,,1, =∩≠∈∀ ji PPjinji ! ;

• Ø:,,,1, =∩≠∈∀ ji IIjinji ! .

Then a global asynchronous interaction model ()τρσ ,,,,,,,, MTRFIPb = can be

obtained by following formal steps:

• ""
#

$
%%
&

'
=

=

i

n

i

II "
1

, analogously for τρσ ,,,,, MTR ;

• RRTPmap A ××→: ;

• for each () RRTrst ××∈,, such that

risitiIi =∧=∧=∈∃)()()(: ρστ

;: newPlacep =

{ };pPP AA ∪=

()(){ }rstpmapmap ,,,∪= ;

•
Ai

n

i

PPP ∪""
#

$
%%
&

'
=

=

"
1

;

Bridging Global and Local Interaction Models Using Petri Nets: Enforceability 7

• (){ ∧==∧∈∈∃×∈=)()(:, kkAA birIiRrPIpiF µσ

()} (){ ∧∈∈∃×∈∪=∧ kA IiRrIPipiiipmap :,)(),(),()(ρστ

()})(),(),()()()(iiipmapbir k ρστµρ =∧==∧ ;

•
Ai

n

i

FFF ∪""
#

$
%%
&

'
=

=

"
1

.

By applying these steps one would derive a global asynchronous interaction model.
Here, we have introduced the additional map relation in order to be able to store
information required for later additional flow relation construction.

One might use a regular Petri net semantics of transitions enabling and firing (in
our case interactions). However, this would mean that interactions are not atomic. It is
possible that interaction send communication action has happened, but the next action
would not be the corresponding receive communication action. However, for some
applications this might be the desired behavior.

On the other hand, a dynamic behavior borrowed from Petri nets of such
asynchronous model can be changed to ensure that interactions happen atomically. To
ensure interaction atomicity the interaction enabling rule must be modified.
Interaction i is enabled iff:

1. 0)(: >•∈∀ pMip ;

2. .),()(),()(),()(,0)(:\ •∈===>•∈∀∈∃ ∗∗ ipiiiiiipMpipIi mmmmm ρρσσττ

Here, i• denotes a set of input places for an interaction i , respectively •i is a set
of an interaction output places. Interactions i and

mi can be referred to as enabled

partner interactions. For enabled pair of i and
mi interactions fire in a sequence, first

i , then
mi :

1. 1)()(:1)()(: +=•∈∀∧−=•∈∀ pMpMippMpMip ;

2. 1)()(:1)()(: +=•∈∀∧−=•∈∀ pMpMippMpMip mm
.

3.2. Global Synchronous Interaction Model

We have already started looking at interactions as synchronous activities. We have
presented interaction enabling and interaction firing rules to ensure atomicity of single
interactions, i.e. no other actions are possible between single interaction send and
receive activities. A global model can be composed to assume synchronous nature of
separate interactions. The visualization of such a composition for local models

3b and

4b from our sample set B is shown in Figure 4.

8 Artem Polyvyanyy

!"#

!$#
%&&&&'

()

%&&&&'
($

'&&&&*
("

%&&&&'
($

Fig. 4. Sample synchronous local interaction models composition

Corresponding interaction occurrences over local models set are merged. This
procedure can be formalized and can be given in a form of an algorithm.

For { } +Ν∈nbb n ,,,1 ! , where ()iiiiiiiiii MTRFIPb τρσ ,,,,,,,,= is a local IPN

such that:

• Ø:,,,1, =∩≠∈∀ ji PPjinji ! ;

• Ø:,,,1, =∩≠∈∀ ji IIjinji ! .

Then a global synchronous interaction model ()τρσ ,,,,,,,, MTRFIPb = can be

obtained by following formal steps:

• ""
#

$
%%
&

'
=

=

i

n

i

PP "
1

, analogously for MTR ,, ;

• { ,)()(),()(),()(,:, mkmkmkMmKkmk iiiiiiMKIiIiiI ρρσσττ ===≠∈∃∈∃=

})()(),()(mMkK ibib ρµσµ == ;

• (){ }riIiriIiIiri mMmkKkmkmk =∈∃∨=∈∃∈=)(:)(:,, ,, σσσ ,

 analogously for τρ, ;

• () () (){ }∪∈∈∃∨∈∃∈= nKFipFipIiipF KmKkmkmk ,,1,,,,, ,, !

() () (){ }nKFpiFpiIipi KmKkmkmk ,,1,,,,, ,, !∈∈∃∨∈∃∈ .

By performing these steps one is able to derive a global synchronous interaction
model. Each interaction in such a model is an indivisible concept which assumes
sending and receiving a message as an atomic phenomenon.

4. Enforceability

Now, we can define enforceability, as the property of a global interaction model for
which there exists a set of local models which will preserve all the constraints of a
global model in the automated composition of the local models from this set.

A global interaction model ()τρσ ,,,,,,,, MTRFIPb = is locally enforceable iff

there exists { } +Ν∈= nbbB n ,,...,1
– a set of local interaction models that includes all

interactions from b , such that b and the global synchronous interaction model
constructed from B are in simulation preorder relation, in the sense that b simulates

Bridging Global and Local Interaction Models Using Petri Nets: Enforceability 9

the automated composition of the local models set with a constraint that whenever
automated composition reaches the final state, b also reaches the final state.

In theoretical computer science a simulation preorder is a relation between state
transition systems associating systems which behave in the same way in the sense that
one system simulates the other. Intuitively, a system simulates another system if it can
match all of its moves [2].

An interaction model state transition system consists of interaction firing
transitions and states that denote interaction firing sequence starting from the initial
state. In the proposed definition of enforceability one might incorporate global
asynchronous interaction model with state transition system assuming modified
interaction firing semantics that preserves atomicity of interactions.

In Figure 5 we illustrate the global synchronous interaction model constructed
from our sample local models set provided in Figure 1.

!+#

!)#

!$#

!"#

&&'%
($

&&'%
($

&&%,
(+

&&%,
(+

&&'%
() &&*'

("

Fig. 5. Global synchronous interaction model for sample local models set from Figure 1

Here, the input places for local models are correspondently marked. Subsequently,
in Figure 6 you can find state transition systems for both, the initial global model
(Figure 2) and the automatically derived global model (Figure 5).

,%

%'

'* %'
%'

'*

'* ,% %'
,%

'* %'
%'

'*

,%

%'

%'

'*

'* ,% %'
,%

'* %'
%'

'*

-. !.

Fig. 6. State transition systems: a) for the global model – Figure 2, b) for the global
synchronous interaction model – Figure 5

In Figure 6 it is noticeable that system b is more restrictive as compared to system
a. The additional restriction comes from the local model for actor in role C not
knowing that interaction between actors in roles C and D is enabled before the
interaction between actors in roles B and C has happened. However, system a
simulates system b with additional constraint that once system b reaches its final state,
system a is also in its final state. Finally, system b contains all the interactions that

10 Artem Polyvyanyy

appear in a. Thus, we conclude that the initial global model proposed in Figure 2 is
enforceable.

5. Conclusions

In this paper we have done a survey on the enforceability property of global
interaction models. We have provided the extended Petri net notation (IPN) suited for
choreography modeling. We have developed two approaches for automated local
interaction models composition. Finally, we have proposed the formal definition of
the enforceability property for global interaction models.

The fact that we have used Petri net as the basis for interaction modeling allowed
us to reuse the formal mathematical model of Petri nets and to perform further
reasoning on it. Also, it is possible to perform analysis of Petri nets properties on
interaction Petri nets. These are reachability, liveness and boundedness properties.

Enforceability was already studied in [1]. In this work the authors define an
algorithm for determining if a global model is locally enforceable and an algorithm
for generating local models from global ones. However, this work is based on the
verbal definition of enforceability. Now, we have closed this gap.

As a complement to the work reported in this paper a formal definition of the
simulation, with the constraints applied while enforceability definition, might be
derived. Probably, a simulation variant might be defined to suit our needs. Also, an
investigation of IPN ability to represent common interaction patterns [4] is of great
interest.

6. References

1. J. M. Zaha, M. Dumas, A. ter Hofstede, A. Barros, G. Decker: Service Interaction Modeling:
Bridging Global and Local Views. In Proceedings of the 10th International EDOC
Conference, Hong Kong, 2006

2. R. J. van Glabbeek and W. P. Weijland. Branching Time and Abstraction in Bisimulation
Semantics. Journal of the ACM, 43(3):555-600, May 1996

3. N. Kavantzas, D. Burdett, G. Ritzinger, and Y. Lafon. Web Services Choreography
Description Language Version 1.0, W3C Candidate Recommendation, November 2005.
http://www.w3.org/TR/ws-cdl-10

4. A. Barros, M. Dumas, and A. H.M. ter Hofstede: Service Interactions Patterns. In
Proceedings of the 3rd International Conference on Business Process Management (BPM),
Nancy, France, September 2005. Springer Verlag, pp. 302-218

5. J.M. Zaha, A. Barros, M. Dumas, A. ter Hofstede: Let’s Dance: A Language for Service
Behavior Modeling. Technical Report FIT-2006, Faculty of IT, Queensland University of
Technology, 2006. http://eprints.qut.edu.au/archive/00004468/

6. D.A.C. Quartel, R.M. Dijkman, M. van Sinderen: Methodological support for service-
oriented design with ISDL. In Proceedings of the 2nd Intenational Conference on Service-
Oriented Computing (ICSOC), New York NY, USA, November 2004, pp 1–10, Springer
Verlag

7. C.A. Petri. Kommunikation mit Automaten. PhD thesis, Institut für instrumentelle
Mathematik, Bonn, 1962

8. W3C Web Services Glossary, 2004, http://www.w3.org/TR/ws-gloss/

A Compatibility Notion
based on Desired Interactions

Matthias Weidlich

Hasso-Plattner-Institute for IT Systems Engineering
at the University of Potsdam
D-14482 Potsdam, Germany

matthias.weidlich@hpi.uni-potsdam.de

Abstract. Current approaches used to determine compatibility for com-
positions of business processes neglect the aspect, whether the intercon-
nected processes are able to potentially attain their goals. Based on the
assumption, that these goals are related to some interactions, we provide
a new compatibility notion. Therefore this paper introduces desired in-
teractions compatibility which adds reachability of certain interactions to
interaction soundness. In addition to the definition of our compatibility
notion in π-calculus, we discuss its application to operating guidelines.

1 Introduction

Together with the increasing influence of the service-oriented architecture (SOA),
a growing demand for compatibility notions can be determined, as any process
integration relies on them. Applied during design time, these notions ensure the
correctness of process compositions. Additionally, the question whether service
providers and service requesters can interact successfully has high relevance for
service discovery. For a specific service request, the service broker has to select
these services from a repository that are guaranteed to interact properly with
the requester.

Various approaches have been presented to check structural and behavioral
compatibility. Nevertheless, criteria for the evaluation of the success of service
interactions have often been limited to the freedom of live- and deadlocks or
the prevention of unanticipated messages. This paper argues, that this is not
sufficient as every interaction is executed to attain a certain goal. This require-
ment derives from the business process definition as “a set of one or more linked
procedures or activities which collectively realize a business objective or policy
goal...”[1]. Hence, a compatibility notion should also take the potential achieve-
ment of this goal into consideration. Therefore, we provide a new compatibility
notion, ensuring that interconnected processes can achieve a certain goal.

A main question is how goals can be formalized. One possibility would be
the definition of global desired termination states. In these states all processes
of the composition have to be in one of their local desired termination states.
This idea raises the question how services without explicit end states should be

2

!
"
#
$%
& '()*+)($",

-%(.,

/"0+"1$
2(.3)",

-%(.,

/"4"*$5%.

2(.3)",

-%(.,

6**"7$(.*"

85.(.*5(),'%&79

'&"35$,:.1$5$+$",; '&"35$,:.1$5$+$",< '&"35$,:.1$5$+$",.!!!

'&"35$,

:.15$+$",

-5.=

/"0+"1$,

6**"7$(.*"

/"0+"1$,

/"4"*$5%.

-%%=+7

'&"35$

:.1$5$+$"

>".3

-%(.

/"0+"1$

Fig. 1. Loan request scenario

treated (for instance a service provider is reset to an inital state after responding
a certain request). However, this paper focus on another possibility to define
goals, namely desired interactions. Thus, we assume that the goal of a process
in a composition is always directly related to some interactions. Consequently,
processes are compatible in regard to their goals, if all desired interactions can
potentially occur.

The next section discusses the context of interconnected processes by means
of an example and section 3 summarizes related work. In section 4 we define
our compatibility notion using the π-calculus, while we propagate our ideas to
operating guidelines in section 5. The paper concludes with a discussion of the
achievements.

2 Interconnected Processes

To introduce the topic, we present an example from the financial domain, namely
a loan request. Figure 1 illustrates the example using a slightly extended variant
of the Business Process Modeling Notation (BPMN). At first the debtor calcu-
lates the loan amount and sends this information to a financial corporation. This
corporation determines the credit institute offering the best conditions and sends
a link to it back to the debtor. Subsequently, the debtor sends a loan request to
the selected credit institute and receives either an acceptance or a rejection of his
request. This example comprises five interactions: credit institute lookup, credit
institute link transmission, loan request, rejection response and acceptance re-
sponse, whereby the latter is the desired response from the debtor’s view. Thus
the exchange of the acceptance message is the desired interaction in our example.
Hence any service implementation of the credit institute, which always rejects
loan requests (e.g., because it does not offer any loan transactions), must not be
compatible with a debtor service implementation. In contrast, a credit institute
implementation, at least sometimes sending acceptance messages or perhaps not

3

even capable to send rejection messages, is compatible, as the debtor achieves his
goal and takes out a loan. Therefore, an implementation of the credit institute
must not be able to send acceptance as well as rejection messages.

Service compositions respecting their desired interactions can contain dead-
locks, livelocks and dead activities. Although there may be some reasons to
allow these effects (e.g. a deadlock of the credit institute service is solved at
some higher abstraction level and thus is irrelevant, if the desired interaction
already occurred), we want to prohibit them. The motivation behind is driven
by the interpretation of non-desired interactions as treatement of negative re-
sponses (as in the introduced example), fall-back or error handling processes.
Although their occurrence is not necessary to attain a certain goal, they should
lead to valid process states. This is ensured by applying common compatiblity
notions, that prove the subprocesses in the composition to be free of deadlocks
and livelocks.

3 Related Work

Related work comprises various compatibility notions published in recent years.
Martens [2] defined weak soundness for Petri nets ensuring that the intercon-
nected processes are free of deadlocks and livelocks. Canal et al. [3] introduced
another compatibility notion for π-processes, overcoming the limitations of Petri
nets regarding dynamic binding. Nevertheless, this notion is specified for bi-
lateral communication only. Puhlmann et al. [4] introduced interaction sound-
ness for the π-calculus. It is based on lazy soundness and proves processes to be
free of deadlocks and livelocks, while allowing lazy activities. However, process
goals are not considered. A remarkable approach has been published by Dijkman
and Dumas attempting to overcome goal incompatibilities [5]. Nonetheless, they
require a comprehensive choreography description and the procedure is also lim-
ited to Petri nets. Among other types of structural compatibility, Decker presents
minimal structural compatibility in [6], even though a formal definition is miss-
ing. The operating guideline approach [7–9] suggests a different point of view,
since all valid interaction behavior respecting the well-communicating criterion
is specified. Currently, this approach is limited to acyclic Petri nets.

4 Formalization of the Compatibility Notion in
π-Calculus

This section describes our compatibility notion based on desired interactions.
At first, the π-calculus, which can be used for description and analysis of inter-
acting processes, is introduced. Due to its link passing capability, the π-calculus
is predestined to model dynamic binding in the SOA domain (an extended mo-
tivation can be found in [10]). Besides, the potential utilization of simulation
techniques to prove compatibility, argues for the application of π-calculus as our
formal foundation. The second part summarizes process requirements related to

4

structural compatibility and interaction soundness. In the third part, we use the
π-calculus to formally define the notion in respect to desired interactions.

4.1 Prerequisits: The π-Calculus

The π-calculus is a process algebra developed to describe and analyze concur-
rent, interacting processes in a formal way. It is based on names representing
the communication channels as well as the messages sent over them. Hence com-
munication channels can be passed to other processes to support link passing
mobility, the π-calculus is particularly suited to describe systems with dynamic
or evolving structures.

The grammar of the π-calculus is defined in the Backus normal form as
follows:

P ::= M | P |P ′ | vzP | !P | K(y1, . . . yn)
M ::= 0 | π.P | M + M ′

π ::= x〈ỹ〉 | x(z̃) | τ | [x = y]π.

Informally spoken, the process semantic can be characterized as follows: The
concurrent execution of two processes P and P ′ is denoted by P |P ′. C =

∏n
i=1 Pi

is the short form for the definition of the composition C as the parallel execution
of n processes Pi and P ∈ C denotes that P is a concurrent subprocess of C.
In the process vzP , the operator v restricts the name z to P . The meaning
of the process replication, given by !P , is that an infinite number of replicated
process instances are acting in parallel. Recursion for P with the parameters
y1, . . . yn is expressed via P (y1, . . . yn). The inaction 0 represents empty or in-
active behavior. Further on, the summation operator specifies alternatives, as
M + M ′ evolves to M or M ′. All actions a process can do, are given by π. To
model interactions, input and output prefixes are used. The output prefix x〈ỹ〉.P
evolves to P after sending a sequence of names ỹ over the channel identified with
x. The corresponding action is the input prefix x(z̃).P . This process receives a
sequence of names and continues as P{m̃/z̃} with all occurrences of z̃ replaced
by the received names. The corresponding input action to the output action x
is also denoted as x, which is semantically identical to x. Additionally, τ , the
silent transition, models an internal action, which cannot be observed at all. The
match prefix [x = y]π.P is defined in the expected way: the process behaves as
π.P , iff x and y are identical, and like 0 otherwise.

A complete formal definition of the π-calculus semantics based on a labeled
transition system can be found in [11]. Nevertheless we introduce some of the
reasoning concepts, as they are of high relevance for this paper.

In the π-calculus the name x is bound inside a process P by binding operators,
either y(x) or vxP . Names that are not bound at all, are in the set of free names
denoted by fn(P). In contrast to bound names, free names can be accessed from
processes outside of P . On account of this, they are used to model interactions
and can be observed for simulation-based reasoning. Furthermore a transition
sequence P

α→ P ′ is a sequence of interactions or unobservable actions, with α

5

describing the actions to transform P to P ′. An action x of the process P is
reachable, if there exists a transition sequence P

α→ P ′ x→ P ′′.
Based thereon, simulation is defined as a binary relation R on two processes:

PRQ∧P
α→ P ′ ⇒ ∃Q′ : Q

α→ Q′ ∧P ′RQ′. Informally, weak simulation is a sim-
ulation focusing the observable behavior regarding free names while abstracting
from internal actions. Furthermore, an open simulation is a simulation, that is
preserved by all name substitutions (please refer to [11–13] for details).

4.2 Structural Compatibility and Interaction Soundness

As already mentioned, we require processes not to be able to receive all mes-
sages potentially sent. Following the arguementation in [6], we demand at least
one potential interaction between two processes. Thus, every process Pi partic-
ipates in at least one potential interaction with one of the other processes of
SY S =

∏n
i=1 Pi. In the following, we require at least one static link between two

processes. This is the case, when one name exists in the set of actions, for which
a corresponding action is in the set of actions of another process of SY S. With
APi as the set of actions for a process Pi, which can comprise any name x of a
channel that is used in an input (output) prefix x(ỹ) (x〈ỹ〉), we formalize min-
imal structural compatibility for SY S =

∏n
i=1 Pi as follows (please note, that

x ∈ APi identifies one element of the set and not necessarily an input action):

∀Pi ∈ SY S : ∃x ∈ APi : x ∈ APj ∧ i)= j.

Due to the link passing capability of the π-calculus, we can imagine a process
composition SY S = (A|B|C) = (a〈c〉.0|a(b).b〈〉.0|c().0), in which every process
communicates with another process, but the introduced criterion is not fulfilled.
That derives from the dynamic binding, as a link to process C is at first passed
from A to B, which interacts with C afterwards. Therefore, a formalization of
minimal structural compatibility respecting potential dynamic binding in the π-
calculus would have to take two aspects into account: on the one hand, one has
to regard the knowledge about free names of input actions of processes without
static link to another process (in the introduced example A has this knowledge
about C in form of the name c). On the other hand, the potential propagation
of this knowledge to processes that can send on bound names (in the example
A propagates the knowledge to B, which can send on a bound name) has to be
considered.

It was already mentioned, that the reachablility of desired interactions does
not ensure the correctness of process compositions. To prove the processes to be
free of deadlock and livelocks, a common compatiblity notion has to be applied.
Therefore, we prove all subprocesses of the composition to be interaction sound.
Every subprocess is treated separately and its interaction soundness is decided
regarding an environment built of all remaining subprocesses of the composition.
Interaction soundness guarantees the subprocesses to be free of deadlocks in
the context of the process composition. Interaction soundness has been chosen
because it is grounded on lazy soundness, and thus allows activities to be become

6

active after the final activity has been reached. Interaction soundness is defined
for a process P in an environment E. It requires the unification, denoted as P*E,
to be lazy sound. Thus the final activity of P *E is semantically reachable from
every activity reachable from the initial activity, until the final activity has been
reached for the first time. In addition, it is required that the final activity is
reached exactly once.

In regard to the process composition SY S =
∏n

j=1 Pj , we have to decide
interaction soundness for every subprocess Pj . The environment EPk for a cer-
tain subprocess Pk emerges from SY S by removing Pk, resulting in EPk =
(
∏k−1

j=1 Pj |
∏n

j=k+1 Pj). The system consisting of Pk and EPk , denoted as SY SPk =
(Pk|EPk), is enhanced with the free name i for the initial activity and the free
name o for the final activity. While the enchancement with the name i can be
done straightforward, the enhancement of the final activity might require an
extensive restructuring of the process. This task has to be done potentially in
a manual way, depending on the algorithms used to derive the π-calculus rep-
resentation of the process. The derived annotated system, denoted as ASY SPk ,
is then checked for weak open bisimulation equivalence with SLAZY = i.τ.o.0.
We formalize the fact, that all subprocesses of the composition SY S have to be
interaction sound, as follows:

∀Pj ∈ SY S : ASY SPj ≈O
i,o SLAZY .

4.3 Desired Interactions in π-Calculus Processes

Based on the above-named requirements, we extend the known compatibility
notions by taking desired interactions into consideration. In this context desired
interactions are interactions between two or more processes, of which the po-
tential reachability should be guaranteed. They are needed for some processes
to attain their policy goals, which are defined independently of the process end
states. Thus, the set of desired actions DAP for a single process P , can com-
prise any free name x of a channel that is used in an input (output) prefix x(ỹ)
(x〈ỹ〉) contained in P . In other words, any send (receive) action on a channel
with the free name x ∈ DAP is a desired action of P . The requirement for free
names originates from the essential observability of the according action. With-
out this demand we could consider an example process P = (lookup(z).z〈〉.0)
with DAP = {z}, which leads to the following problem: the desired action can-
not be identified due to the dynamic binding of the name of the corresponding
channel.

The set of desired actions of a process composition SY S =
∏n

i=1 Pi, com-
prising n processes Pi, is denoted by DASY S . It is defined as the union of sets of
desired actions DAPi regarding all subprocesses. Hence, DASY S is not a multi-
set, every element is unique. Subsequently, these desired actions identify the set
of desired interactions DISY S , that contains all desired actions and their corre-
sponding actions. Thus, a desired interaction is a pair of an input and an output
action:

x ∈ DASY S ⇒ x ∈ DISY S ∧ x ∈ DISY S .

7

The reachability of these desired interactions extends the existing compat-
ibility notions and leads to the following definition of desired interaction com-
patibility. The processes in a process composition SY S =

∏n
i=1 Pi are desired

interaction compatible, if and only if:

1. the proces composition SY S is minimal structural compatible,
2. every process Pi is interaction sound (in regard to the other processes acting

as an environment) and
3. all desired interactions DISY S are reachable.

Algorithms have been presented to prove the first and the second criterion,
consequently we focus on the third constraint. The reachability of the desired
interactions is decided using simulation techniques. The idea behind is to ob-
serve whether a desired interaction occurs during the execution of the process
composition. Therefore, we define a process Ix = (x|x) executing the two actions
x and x, which compose the according interaction, in parallel. The interaction
is reachable during the process evolvement, iff the process composition weakly
simulates the process Ix provided that all other free names unequal to x have
been restricted to SY S. We apply weak simulation due to the abstraction of
all internal communication (evolving to silent transitions) within the composi-
tion. Hence, all free names, which should not be observed, are restricted to the
process composition. Consequently, their related actions are treated as internal
communication. Thus, we formalize this requirement for all desired interactions
DISY S of a process composition SY S =

∏n
i=1 Pi as follows:

∀x ∈ DISY S : (vy|y ∈ fn(SY S) \ {x, x})(SY S) !O Ix with Ix = (x|x).

The necessity to consider each interaction separately originates from the
arbitrary order of the potential interactions. Thus, we prove reachability for a
single interaction and not for all conceivable combinations of desired interactions.
Consider an example composition consisting of the three processes A = s.τ.e.0
and B1 = B2 = s.0 + e.0 with DI(A|B1|B2) = {s, s, e, e}. The processes in this
composition interact successfully, if we can observe the interactions on the two
channels s and e. However, we do not require the processes to participate in these
interactions in every conceivable combination, as the order is determined by the
process A, which receives e after s. Consequently, this process composition is
not able to simulate Is,e = (s|s|e|e), in which the actions are not restricted to
any order. In contrast, the composition simulates both Is = (s|s) and Ie = (e|e),
so that the order of these interactions can be restricted in the composition.
Additionally, Is,e would require that both s and e occur, which might not always
be the case. Imagine A = s.0 + e.0 as a new definition of the process A. The
desired interactions are mutually exclusive, hence the system containing the new
definition of A cannot simulate Is,e, which requires the occurence of both actions
s and e.

Finally, we want to apply desired interaction compatibility to the example
process illustrated in figure 1. Therefore, we define the debtor (DEBT), the

8

financial corporation (FICORP) and two credit institutes (CRE1 and CRE2)
as follows:

DEBT (lu, acc, rej) = (vc)(τ.lu〈c〉.c(ci).ci〈acc, rej〉.(acc.τ.0 + rej.τ.0))
FICORP (lu, cri) = (vx)(lu(x).x〈cri〉.F ICORP (lu, cri))

CRE1(x) = (va, r)(x(a, r).(a.CRE1(x) + r.CRE1(x)))
CRE2(x) = (va, r)(x(a, r).r.CRE2(x))

Furthermore we define two process compositions:

SY S1(acc, rej) = (vl)(DEBT (l, acc, rej)|(vc)(FICORP (l, c)|CRE1(c)))
SY S2(acc, rej) = (vl)(DEBT (l, acc, rej)|(vc)(FICORP (l, c)|CRE2(c)))

Thus, the debtor in the first composition (SY S1) eventually sends the loan re-
quest to a credit institute, which either accepts or rejects the request. In the
second composition (SY S2) the loan request is treated by the other credit insti-
tute, which always rejects the request. Obviously an accepted loan request is part
of the goal definition for the debtor, therefore we define DISY S1 = DISY S2 =
{acc, acc}. As all above mentioned criteria concerning the participation of every
process and interaction soundness are fulfilled, we can decide desired interac-
tion compatibility. Hence, SY S1 simulates Iacc(acc) = (acc|acc), the processes
in SY S1 are desired interaction compatible. In contrast SY S2 fails to simulate
Iacc, thus the compatibility criteria are not fulfilled.

5 Desired Interactions with Operating Guidelines

As operating guidelines are a promising technique to specify potential interaction
behavior, we also relate our ideas to this approach. The first part of this section
introduces the main concepts of the operating guidelines approach. The second
part extends the well-communicating criterion, in regard to desired interations.
The discussion in this paper is restricted to bilateral process communication of
a service provider and a service requester. Although operating guidelines are not
restricted to bilateral scenarios, a discussion of multilateral process communica-
tion is beyond the scope of this paper.

5.1 Prerequisits: Operating Guidelines

Operating guidelines require processes to be defined as open workflow nets
(oWFN) according to the formal model presented in [7]. These nets are work-
flow nets [14], enriched with places for asynchronous communication. Thus, an
open workflow net is a Petri net N = (P, T, F, m0,ω, in, out), specified by a set
of places P , a set of transitions T , a flow relation F ⊆ (S × T) ∪ (T × S), an
initial marking m0, a set Ω of final markings and two sets in, out ⊆ P contain-
ing the input and output places, respectively. Further, for all transitions t ∈ T :
card({p ∈ in|(p, t) ∈ F} ∪ {p ∈ out|(t, p) ∈ F}) ≤ 1 and if p ∈ in(p ∈ out)

9

then (t, p))∈ F ((p, t))∈ F). The inner of N is obtained by removing all interface
places pi ∈ in∪ out, together with their adjacent arcs. The behavior BN of N is
the reachability tree of the inner of N , whose edges are annotated with !x (?x),
if the corresponding transition is connected to an output (input) place x, and
with τ otherwise. Therefore BN = (

∑
, S, s0, T, F) is defined via an alphabet∑

= in ∪ out, a set S of states, an initial state s0 ∈ S, a set of transitions
T ⊆ S×L×S with L = {?x|x ∈ in}∪{!x|x ∈ out} as the set of transition labels
and a set F ⊂ S of final states.

An operating guideline is an annotated automaton, which characterizes the
set of all possible interaction behavior. It is defined as OGN = (

∑
, S, s0, T, F, φ)

for a Petri net N with the above mentioned definitions and an annotation func-
tion φ(s) mapping every state s ∈ S to a Boolean formula with all outgoing
transition labels of s as propositions. OGN for an acyclic, deterministic (the
non-deterministic case is described in [15], cyclic nets are still to be treated)
Petri net N is constructed out of the complete behavior BR of some partner
oWFN R with an outgoing edge labeled with !x (?x) for every input (output)
place x of N . In an iterative process, all nodes representing undesired situations
are removed from BR. The resulting automaton B∗ is the most permissive be-
havior. The operating guideline OGN is constructed out of B∗ by defining the
annotation function φ. This function annotates every node with a Boolean for-
mula over the labels of the outgoing edges. Consequently, the transitions required
for proper interaction are identified. Please refer to [9] for any details.

5.2 Compatiblity Criterion based on Desired Interactions

Referring to [7] two processes are well-communicating, iff the behavior of one
process (the requester) is an isomorphic subtree of the operating guideline of
the other process (the provider) and all annotations are satisfied. Taking de-
sired interactions into consideration we extend these criteria. Consequently, we
require the behavior of the process acting as service requester to include the cor-
responding actions to all desired actions of the service provider. In this context
every input (output) transition label ?x ∈ L (!x ∈ L) can identify a desired ac-
tion, so that DA ⊆ L. Following the definition introduced in section 4.3, the set
of desired interactions DI contains all desired actions and their corresponding
actions.

We formalize the desired interaction criteria for an oWFN R (the requester)
with its behavior BR and an operating guideline OGP for a service provider P
in the following way:

∀ ?x, !x ∈ DI(R|P) : (?x ∈ DAP ⇒ !x ∈ BR) ∧ (!x ∈ DAP ⇒ ?x ∈ BR)

Figure 2 illustrates the open workflow nets for the introduced example. Hence,
we abstract from the dynamic binding of the debtor and a certain credit insti-
tute, the financial corporation is not presented. Below the oWFNs the oper-
ating guideline OGDE for the debtor and the behavior automata of the two
credit institutes are visualized. Again the exchange of an acceptance message

10

!"#$

#%&'()

*)%+

,-.. ,)%/

-..

)%/

)%+

0)%12'3456'2'7'%38

,)%+

-..)%/

-..

)%/

)%+

0)%12'3456'2'7'%39

,)%+

*)%/)%/

)%+

,)%+3:3*-..3:3*)%/

-..3:3)%/

,)%+
*-..

*)%/

;
048

*-.. *)%/

;
049

*)%/

,)%+,)%+

,)%+ ,)%+*-.. *)%/

Fig. 2. Debtor with operating guideline OGDE and two credit institutes and the related
behaviors BCI1 and BCI2

is a desired interaction, thus DI(DE|CI1) = DI(DE|CI2) = {?acc, !acc}. The two
conceivable systems including the debtor and one of the credit institutes, are
well-communicating as the behaviors are subtrees of the operating guideline and
the annotations are fulfilled. Nevertheless only the composition including the
credit institute CI1 is also desired interaction compatible, due to the absence of
the transition label !acc in BCI2.

6 Conclusion

This paper motivates the need to consider the potential achievement of pro-
cess goals in process integration scenarios. To put our ideas into perspective, we
shortly discussed goal formalization, minimal structural compatibility and in-
teraction soundness as related concepts. To address the demand for potentially
successful interaction, a new compatibility notion based on desired interactions
has been introduced. The approach presented extends interaction soundness,
consequently processes possibly containing lazy activities are proved to be free
of deadlocks and livelocks.

11

To ensure the reachability of certain interactions, we firstly defined desired
actions and interactions using π-calculus as formal foundation. The π-calculus al-
gebra has been chosen as it allows reasoning for business processes with dynamic
name binding. Based thereon, we specified desired interactions compatibility and
showed how simulation techniques can be used to decide it. We validated our
findings using the Advanced Bisimulation Checker (ABC) [16]. Further on, we
discussed desired interactions in the field of operating guidelines and presented
an extended correctness criterion.

Future work remains to propagate the presented approach to operating guide-
lines for multiple partners [9]. In addition, our formalization of minimal struc-
tural compatibility requires static links between processes of a process compo-
sition. Thus, a formalization of this criterion, which takes dynamic binding into
account is to be presented. Further work also has to focus on desired end states
as a potential alternative to desired interactions, when considering goals in a
compatibility notion.

References

1. Workflow Management Coalition: Terminology & Glossary (1999)
2. Martens, A.: On Compatibility of Web Services. Petri Net Newsletter 65 (2003)

12–20
3. Canal, C., Pimentel, E., Troya, J.M.: Compatibility and inheritance in software

architectures. Sci. Comput. Program. 41(2) (2001) 105–138
4. Puhlmann, F., Weske, M.: Interaction Soundness for Service Orchestrations. In

Dan, A., Lamersdorf, W., eds.: Proceedings of the 4th International Conference
on Service Oriented Computing (ICSOC 2006). Volume 4294 of LNCS., Springer
Verlag (December 2006) 302–313

5. Dijkman, R.M., Dumas, M.: Service-Oriented Design: A Multi-Viewpoint Ap-
proach. Int. J. Cooperative Inf. Syst. 13(4) (2004) 337–368

6. Decker, G., Weske, M.: Behavioral Consistency for B2B Process Integration. In:
Proceedings of the 19th International Conference on Advanced Information Sys-
tems Engineering (CAISE 2007), Trondheim, Norway. (2007)

7. Massuthe, P., Reisig, W., Schmidt, K.: An Operating Guideline Approach to the
SOA. Annals of Mathematics, Computing & Teleinformatics 1(3) (2005) 35–43

8. Massuthe, P., Schmidt, K.: Operating Guidelines - an Automata-Theoretic Foun-
dation for the Service-Oriented Architecture. In: Proceedings Fifth International
Conference on Quality Software (QSIC 2005), Washington, DC, USA, IEEE Com-
puter Society (2005) 452–457

9. Massuthe, P., Schmidt, K.: Operating Guidelines - an Alternative to Public View.
Informatik-Berichte 189, Humboldt-Universität zu Berlin (2005)

10. Puhlmann, F.: Why do we actually need the pi-calculus for business process man-
agement? In Abramowicz, W., Mayr, H.C., eds.: BIS. Volume 85 of LNI., GI (2006)
77–89

11. Sangiorgi, D.: A Theory of Bisimulation for the pi-Calculus. Acta Informatica
16(33) (1996) 69–97

12. Parrow, J. In: An Introduction to the π-Calculus. Elsevier (2001) 479–543
13. Milner, R.: Communicating and Mobile Systems: the Pi-Calculus. Cambridge

University Press (1999)

12

14. Aalst, W.: The Application of Petri Nets to Workflow Management. (2000)
15. Massuthe, P., Wolf, K.: An algorithm for matching nondeterministic services with

operating guidelines (January 01 2006)
16. Briais, S.: Advanced Bisimulation Checker (ABC)

http://lamp.epfl.ch/ sbriais/abc/abc.html (2007)

Implementing Service Orchestrations using π-Calculus

Olaf M!arker

Hasso Plattner Institute at the University of Potsdam

Abstract. This paper presents approaches to implement service orchestrations
with the π-calculus. It describes how an execution engine can enable π-processes
to invoke web services and how the invocations can be represented in π. Further-
more, a solution to model error handling on process level is introduced.

1 Introduction

The π-calculus, introduced by Milner, Parrow and Walker [5], is a calculus for commu-
nicating systems that can express processes with changing structure. It is used to model
processes and to reason on processes. The π-calculus gives also the base for program-
ming languages like Pict [6].

Furthermore, the π-calculus is discussed as candidate for modelling business pro-
cesses. Theoretical work in this area was already done by the team of Mathias Weske at
the Hasso Plattner Institute at the University of Potsdam. They have shown, for example,
that it is possible to express the workflow patterns in π-calculus [7].

When business processes can be modeled with the π-calculus to reason on them then
it should also be feasible to use these formal process descriptions in π as basis for au-
tomated process execution. Therefore, a execution engine comparable to BPEL engines
should be created that uses π-processes as input. The benefit of such an engine would be
the possibility to check the processes for soundness, e.g. the absence of dead locks, be-
fore they will be executed and the proof that the theoretical concepts for the π-calculus
for business processes will work in a real world scenario. And of course the automati-
sation of business processes.

One common way of implementing business processes is the composition of web
services. Such a loosely coupling of several service is also called service orchestration.
An execution engine that should support service orchestration has at least to be able to
call web services. It has to be discussed how the theoretical approaches of the π-calculus
can be matched to service invocation in practise using existing technologies. Therefore,
a lot of questions have to be solved to come to a solid foundation for an execution engine.
This paper should give a starting point with a solution for the first three challenges:

1. How can π-processes communicate over the internet?
2. How can requests and responses be created in a π-process?
3. How can errors be handled?

First, an overview of the desired architecture will be given followed by an introduc-
tion to the π-calculus. Afterwards, each of the three questions should be discussed in an
own section. At the end, a conclusion will summarise the presented approaches and the
next steps toward an execution engine will be sketched.

1.1 Related works

In her master thesis, Anja Bog has developed a simulator that interprets π-processes.
She describes how a process can be represented in a tree structure and how the reduction
rules can be applied automatically [1]. This will give a solid foundation for the process
handling of an execution engine.

The interpretation ofπ-processes is also discussed for programming languages based
on π. There, the main concepts focus on objects and interactions between objects in
terms of object oriented programming. Communication get the semantic of invoking
methods of objects which fits only partly to the communication of entities over the in-
ternet [6][2].

1.2 Architectural overview

Business logicpi!processes

R

process model

pi!converter Programmer

Domain expert

Web service

Execution engine

Interpreter

Fig. 1. System architecture as FMC compositional structures diagram

The scenario of application of the execution engine is displayed in figure 1. The goal
is the automatisation of a business process that orchestrate web services. For that a do-
main expert can design a business process in a graphical editor.The processmodel can be
converted to π-calculus processes. The π-processes can then be checked for soundness.

Furthermore, a programmer has to provide or implement all non-process functionality,
for example the business logic. The resulting routines and the processes have to be de-
ployed to the execution engine.Within the execution engine a π-interpreter operates on
the processes and call business routines and external web services as is it defined in the
processes. This π-interpreter will also be called `interpreter' in this paper.

1.3 The π-calculus

Table 1. The grammar of the π-calculus

P ::= M | P |P ′ | vzP | !P

M ::= 0 | π.P | M + M ′

π ::= x〈y〉 | x(z) | τ | [x = y]π

The π-calculus is a process algebra with a small grammar that is displayed in table 1.
The basics elements are process identifier symbolised by upper case letters, interactions
represented as lower case letters, the inaction symbol 0, and the Greek letter τ.A process
will end with either a process identifier, which means that the associated process will be
started, or the inaction symbol, that will terminate this process. A process identifier and
an inaction can be prefixed with one or more interaction or τ's, each separated with a dot.
The inaction symbol at the end of a process will often be omitted.

There are two types of interactions, a reading or input action x(a) where x is the
channel and a is a place holder for the transmitted name, and a complementary writing
or output action x〈b〉 where b is the name that has to be transmitted over the channel x.
τ stands for an unobservable action or communication.

Processes can be executed in parallel.This will be denoted asA | B for the processes
A andB. Furthermore, there can be an exclusive choice between two processes but both
processesmust have at least one prefix as in x(a).A+y(b).B.Only one side of the choice
can be executed, usually this will be decided by the prefixes. In the example they are both
reading actions. The first reading action, that receive a name will decide the choice for
its side.

The handling of a process will be realised with the reduction semantics. The prin-
ciple is that each action will be processed once and then vanish, so the process will be
reduced. An action can only be reduced when it is not prefixed by another one. For that
reason, only processes that are in parallel can communicate with each other. The com-
munication in the π-calculus is synchronous, an output action on a channel can only be
processed when there is an unprefixed input action in a parallel process that reads from
the same channel. Both, the output and the input action will be reduced at the same time.
For instance, the process x(a).a〈y〉.A | x〈b〉.B can be reduced to b〈y〉.A{b/a} | B. As
the a in the input action is only a place holder it has to be replaced with the name read
from the channel for the rest of the process. So, the second interaction on the left side

will change from a〈y〉 to b〈y〉 because b is read in the former communication. The notion
A{b/a}means that each a inAwill be replaced by b. Furthermore, it has to bementioned
that each name in the π-calculus can be used as channel and parameter. Processes like
a〈a〉.0 are also possible.

The scope of names can be restricted with the scope operator, the bold-face v. The
name behind this operator will be distinct from all other names in the environment. The
consequence is that no other process can write to or listen on this name as it is only be
known by the creator process. But, the scope can be extruded by sending the name as
parameter of an interaction to other processes.

There exist furthermore an operator for condition that is denoted [x = y]. In the
basic π-calculus only the test for name equivalence is possible.When a condition will
be processed then either the names are equal and the following prefix can be handled
or they are unequal and so the rest of the sequence can not be executed anymore. An
example for the condition operator is x(y).([y = a]s〈y〉+[y = b]t〈y〉).When the name
a will be read from the channel x, then all y have to be replaced by a. The result will be
[a = a]s〈a〉 + [a = b]t〈a〉. Here only the first condition match and the left side of the
exclusive choice wins.When b was read instead then the right side wins.

The last π-construct is the replication operator, the exclamation mark. Each repli-
cated process exists so many times as it is needed. For instance the process !vx gen〈x〉
will so often generate a fresh name and send it on the channel gen as other processes
read from the channel gen.

2 Approaches

In the next sections the three raised questions will be discussed, each in an own subsec-
tion, and solutions will be presented. It will start with the question:How can π-processes
communicate over the internet?

2.1 Communication

To enable the interpreter to communicate with existing web services it has to use the
same communication protocol. As many web services, specially SOAP-based services
or services in a REST architecture, use the Hypertext Transfer Protocol (HTTP) [3] the
interpreter should support this standard communication protocol, too.

HTTP (version 1.1 is the most common at the time of writing this paper) is a pro-
tocol that works with request/response pairs. Both, the request and the response will be
send over the same connection.When a server receive a request then it will generate a
response and send it immediately back to the requester. But this conflicts with the basics
of the π-calculus where input and output actions are separated.

So, the question arises how the concept of request and response pairs could be repre-
sented in the π-calculus? For this question it is worth while to look at a possible imple-
mentation of the interpreter.When the interpreter has to process an output prefix it has
to create a connection to the server and send the request over this connection. Over the
same connection the interpreter receive the response from the server, regardless to the

current process execution.Web services usually do not respect the peculiarities of the π-
calculus and do not wait for sending the response until the client-process listen for them.
The interpreter has to buffer the response till the process itself read it with an input prefix.
But the challenge is to match this buffered response to an input prefix from the process.
As input and output interactions are separated in the π-calculus, processes can send a
request, then doing something else like interact with other processes, and afterwards re-
ceiving the response. A solution for this challenge has to operate on the π-level. In the
process model the matching from responses to requests should be non-ambiguously.

There are some approaches to represent requests/responses pairs in π. For example
one can model the connection within the process that has to be opened and on which the
request and the response would be sent. A similar approach is often used in the theory
to transfer more then one message between two processes without the intervention of
other processes, for example to encode the polyadicπ-calculus in themonadic (standard)
π-calculus [4]. But that leads to unwanted complexity within the process and clashes
with the idea of the layered network protocol stack. The processes should use HTTP as
a service that is provided by the interpreter.

A better approach will be the next one. The base theory of the π-calculus is about
names that can be used as channels for communication and in the same way as values
that should be transmitted while communicating. So a request can be sent to a service
over a channel and then the service can use the request as channel to send the response
back to the client.

Client
def= vreq τ.x〈req〉.req(resp).τ.P (1)

Service
def= !x(req).vresp τ.req〈resp〉 (2)

The client in process 1 creates the request req and send it to the service via the chan-
nel x.The service creates the response resp and send it to the client using req as channel.
The name req is only known by the client and the service and no other process can dis-
turb the communication between both processes. The client then read the response from
the channel req and continue. The interpreter can now assign a buffered response exactly
to an input prefix within the process as it is clear to which request the response belongs.

The advantages of the proposed representation are the explicit visualisation of the
correlation between request and response and the simplicity of themodelling without the
overhead of an additional connection. But, from the view of a modeller it can be strange
to use a request, that is a document, as a communication channel. It can also become
difficult when developing a type system for the π-calculus for service orchestration to
distinguish between channels, documents like requests and responses and request which
can be used as channel in some cases. To make it clear for the modeller the construct
req〈resp〉 should have the semantic of `answering a request with a response'.

In the pi-calculus the communication is synchronous so that one communication part-
ner can first send its message when the counter part is listen on the same channel. But
how could the interpreter recognise, that a service is not yet listening? This should be
easy if the server does not response, that means a connection timeout occur while trying
to connect to the server.But what when the server response with an error message. There

are several error codes and theire semantic defined in the HTTP specification.Messages
like `404 File not found' can be interpreted as a not listening service whereas messages
like `500 Internal server error' marks errors that should be handled. So, the interpreter
has to divide between different error codes and has to adjust its behaviour.

When a service does not response or the error message indicates that the service is
not available yet, the only way to implement the blocking behaviour of the π-calculus
is to poll the service periodical. There exist no mechanism for web services to tell the
clients when it is online.

2.2 Functional aspects

In the last section an approach was introduced that allows π-processes to communicate
over HTTP with services and even with other processes. Requests and responses where
created and transmitted between processes. But requests and responses are documents,
in the meaning of HTTP messages with a head for meta information and a body with the
user content. The theory of the π-calculus can only create names but no content.

In this section the second question should be discussed: How can requests and re-
sponses be handled within a π-process? A general approach will be introduced for data
handling.

To enable π-processes to call web services there is the requirement to implement cer-
tain functionality. For example, to think of a SOAP-based service, the actual service call
has to be put into a SOAP-envelope, that is a XML-document, and also the response from
the service will be boxed into a SOAP-envelope. The client has to parse this document
to use the response. But where should such functionality be implemented?

The π-calculus is of course a powerful and expressive system. So it was allready
shown that even numbers can be encoded as process in π, and there are also object-
oriented programming languages which are based onπ.But theπ-calculus was primarily
designed to describe communicating systems with concurrent processes, and there are
its strengths. Implementing data handling within π seems not to be a trivial task.

For the sake of simplicity the solutions presented in this paper will use the π-calculus
only for communication and process handling. All functional parts, especially the cre-
ation and handling of requests and responses, should be implemented in other program-
ming languages where well-engineered frameworks will support the developing. The in-
terpreter will enable π-processes to call functions in other languages.

With this premise it should be easier to create a working execution engine for the
π-calculus and it gives a lot of flexibility. Each kind of service that is using HTTP as
communication protocol can be called from a π-process as the actual service protocol is
independent from the interpreter. In later extension it should be possible to handle some
functionality within the process. Therefore, the stated premise should not be understood
as dogma, it will allow to focus the development of the interpreter to create a solid basis,
and should be reevaluated en route.

But how can functions implemented in other languages be called from π-processes.
As a function call is a internal construct and do not imply communication with other
processes, it can be represented with the τ prefix. τ stands for an unobservable action or
communication, where unobservable mean that it is no inter-processes communication.
The τ has no visible influence on the process.

Now, the processes can be extended with a τ at each position, where requests and
responses have to be created or other data handling will be required. That was allready
done in the processes 1 and 2. As it can be seen there will be needed more than one
function. To distinguish different functions the τ has to be annotated with an identifier
for example with a function name so that the interpreter knows which function should
be called. This could be done for the service and client process as follow:

Client
def= vreq τcreateRequest.x〈req〉.req(resp).τhandleResponse.P (3)

Service
def= x(req).vresp τhandleRequest.req〈resp〉 (4)

At the beginning the client creates the request. Therefore, the π-name req will be intro-
duced and the function createRequest has to be called. In this function the request will
be filled with content. After receiving the request the service has to interpret it, carry
out the requested service, and create the response. This will be done in the function
handleRequest.When the response was send back to the client, it has to interpret the
results within the function handleResponse.

2.3 Error handling

Up to now, the interpreter is able to allow communication with HTTP over the internet
and requests and responses can be created and handled. This should be enough to or-
chestrate services within a process. But, as the goal is to call services in the real world
where a lot of errors can occur it is requisite to cope with them.

In the theory of the π-calculus the term `error' is mostly used for wrong defined pro-
cesses that will cause problems on the process level when the system evolves.One well-
known problem arise from the polyadic π-calculus where more than one name can be
send over a channel at the same time. At this point runtime-errors can occur when the
count of names that will be sent is unequal to the count of read names from the same
channel. Some times this is also called `communication error' [9].

As this paper focuses on the implemention of an execution engine the term `error'
will not be used in the meaning of wrong process definitions, but as failure or exception
in connected subsystems that prevents the application of the reduction rules with theire
semantic.

Errors can occur at each interaction and in function for creating and handle request
and responses. The former are communication error, which can be the consequence of
a disturbed or congested network connection, and the latter will results from bugs and
unhandled exceptions in the functions. In the theory of the π-calculus interactions are
atomic actions that can take place when there exist an unprefixed output action and an
unprefixed input action on the same channel. In the monadic π-calculus where only one
name can be transmitted per interaction the interaction are assumed to succeed. This is
also true for τ.

In this section a solution will be presented, that allow to handle errors in a generic
way and that is conform to the reduction rules of the π-calculus. For that solutions two
assumptions have to be made.

Assumtion. Each interactionwill first be reduced in the processwhen the underlying
communication ended successfully and each τ will first be reduced when the invoked
function call finished without unhandled exceptions and errors.

Assumtion. The interpreter will send a message to the π-channel e when an error
occur while communicating or calling a function.

These both assumptions allow to introduce the process e(message).E(message)
that will start an error handling process E when the interpreter sends a message to the
channel e. This process can now be added with an exclusive choice to all critical ac-
tions like in the following example: The process x〈a〉.P can be extended to (x〈a〉.P +
e(message).E(message)). In this situation two things can happen. Either the commu-
nication over the channel x finish successfully, then the output action can be reduced and
the left side of the choice is chosen, or an error occur and the interpreter sends a message
over the channel e and the right side of the exclusive choice will be executed.

This concept applied to the client process 3 will lead to:

Client
def= vreq τcreateReq.(x〈req〉.(req(resp).(τhandleResponse.P + e(m).E(m))

+e(m).E(m)) + e(m).E(m)) + e(m).E(m) (5)

Of course, this will increase the size of each process but it will only have linear influence
to the runtime complexity. As this approach is generic, it is possible to extend all pro-
cesses automatically with this standard error handling. Furthermore, the process E can
be substituted with more specific processes when needed.

One error case need special handling. When a service receive a request and after-
wards an error occur at the server, the client has to be informed as it wait for a response.
The service process could be defined as follow:

Service
def= x(req).(vresp τhandleRequest.(req〈resp〉 + e(m).E(m)) + (6)

e(m).verror τerror.req〈error〉.E(m)) + e(m).E(m)

When an error occur in the function handleRequest, instead of the response an error
message will be created and sent to the client. This could be for example an HTTP-
message with the HTTP error code 500 `Internal server error'.

3 Conclusion

In this paper an approach was introduced that describe how an orchestration of web ser-
vices could be implemented using the π-calculus. The orchestration is modeled as pro-
cess with respect to the request/response characteristic of the used communication pro-
tocol HTTP. An execution engine can interpret and process the π-models. The handling
of data is supposed to be realised in other programming languages. Therefore, it is pos-
sible to call functions in other languages from a π-process which is denoted by a τ anno-
tated with the function name. Errors can be handled with a generic error handling block.
Processes can automatically be extended with these blocks.

With the presented results it should be possible to create an execution engine for
the π-calculus for service orchestrations. But, further questions arise and should be an-
swered when developing the execution engine. The theory of the π-calculus deals with

names, the interpreter with URLs, requests and responses. Requests could only be send
to URLs and each request has to be matched by one response. To enforce the correct use
of the elements a suitable type system is required.

The examples in this paper were easy ones without a complex workflow. Thus it has
to be shown that the introduced approaches harmonise with complexer constructs, in par-
ticular with the workflow patterns. Moreover, the compatibility to existing soundness
checking algorithm has to be proven.

These questions should be solved in my master thesis which will follow. There an
execution engine for the π-calculus for service orchestrations should be designed.

References

1. Anja Bog. A visual environment for the simulation of business processes based on the pi-
calculus.Master's thesis,Hasso-Plattner-Institute for IT Systems Engineering at the University
of Potsdam, October 2006.

2. SilvanoDal-Zilio. An interpretation of typed concurrent objects in the blue calculus. In Jan van
Leeuwen,OsamuWatanabe,Masami Hagiya, Peter D.Mosses, and Takayasu Ito, editors, IFIP
TCS, volume 1872 of Lecture Notes in Computer Science, pages 409--424. Springer, 2000.

3. Roy T. Fielding et al. Hypertext transfer protocol - http/1.1. RFC 2616,W3C, June 1999.
4. Robin Milner. The polyadic π-calculus: A tutorial. In Friedrich L. Bauer, Wilfried Brauer,

and Helmut Schwichtenberg, editors, Logic and Algebra of Specification, Proceedings of In-
ternational NATO Summer School (Marktoberdorf, Germany, 1991), volume 94 of Series F.
NATO ASI, Springer, 1993. Available as Technical Report ECS-LFCS-91-180, University of
Edinburgh, October 1991.

5. Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile processes, part I/II.
Journal of Information and Computation, 100:1--77, September 1992.

6. Benjamin C. Pierce and David N. Turner. Pict: A programming language based on the pi-
calculus. In Gordon Plotkin, Colin Stirling, and Mads Tofte, editors, Proof, Language and
Interaction: Essays in Honour of Robin Milner, pages 455--494.MIT Press, 2000.

7. Frank Puhlmann andMathias Weske. Using the pi-calculus for formalizing workflow patterns.
In W.M.P. van der Aalst et al., editor, Business Process Management, volume 3649 of LNCS,
pages 153--168. Springer-Verlag, Berlin, December 2005.

8. Davide Sangiorgi and David Walker. The π-calculus: a Theory of Mobile Processes. Cam-
bridge University Press, 2001.

9. Vasco Thudichum Vasconcelos and Antonio Ravara. Comunication errors in the π-calculus
are undecidable. Information Processing Letters, 71:229--233, 1999.

