

PESOA
Process Family Engineering in Service-Oriented Applications

BMBF-Project

Domain Engineering Techniques and Process
Modeling
Domain Engineering for Families of
Service-oriented Applications

Authors:
Joachim Bayer
Michael Eisenbarth
Theresa Lehner
Frank Puhlmann
Ernst Richter
Arnd Schnieders
Jens Weiland

PESOA-Report No. 09/2004
30 October 2004

PESOA is a cooperative project supported by
the federal ministry of education and research
(BMBF). Its aim is the design and prototypical
implementation of a process family
engineering platform and its application in the
areas of e-business and telematics.
The project partners are:

· DaimlerChrysler Inc.
· Delta Software Technology Ltd.
· Fraunhofer IESE
· Hasso-Plattner-Institute
· Intershop Communications Inc.
· University of Leipzig

PESOA is coordinated by
Prof. Dr. Mathias Weske
Prof.-Dr.-Helmert-Str. 2-3
D-14482 Potsdam

www.pesoa.org

 v

Abstract

The goal of the PESOA project is to design and implement a platform for
families of related service-oriented applications. The envisioned platform is
used to manage process variants for families of service-oriented applications
and to enable the process-based instantiation of such service-oriented
application families.

An important aspect of this goal is the modelling of variant-rich or generic
processes that capture processes for a number of related applications. In
this report, we present a number of analyses that together investigate the
current state-of-the-art and state-of-the practice for modelling variant-rich
processes for the e-Business domain and automotive application domain.
The results of these analyses will be used in the further course of the
PESOA project to develop techniques for modelling variant-rich processes
and for using them to specify families of service-oriented applications.

We analyze domain engineering techniques as a way to bring variability in
processes. Additionally, we look at requirements posed by the two
considered application domains, the e-Business domain and the automotive
domain, as well as languages for process modelling.

Keywords: PESOA, Service-oriented Application, Software Product Lines, Domain
Engineering, Process Modeling, Automotive, eBusiness.

 vii

Table of Contents

1 Introduction 1

2 Product Line Engineering for Process Families 2
2.1 Motivation 2
2.1.1 Product Line Engineering 2
2.1.2 Domain Engineering 4
2.2 Incremental Product Line Engineering 6
2.2.1 Variability Modelling 8
2.2.2 Decision Modelling 9
2.2.3 Application Engineering 10
2.3 Feature-Oriented Domain Analysis (FODA) 11
2.3.1 Context Analysis and Domain Scoping 12
2.3.2 Domain Modeling 13
2.3.3 Architectural Modeling 14
2.3.4 Representation Form 14
2.3.5 Summary and generic process engineering support with

FODA 15
2.4 Family-oriented Abstraction, Specification, and Translation

Process 15
2.4.1 Commonality Analysis 16
2.4.2 Comments on the Example 17
2.4.3 Summary 17
2.5 PuLSE (Product Line Software Engineering) 18
2.5.1 Deployment Phases 19
2.5.2 Technical Components 20
2.5.3 Support Components 23
2.5.4 Generic Process support in PuLSE and summary 24
2.6 The KobrA Method 24
2.6.1 Framework Engineering 25
2.6.2 Application Engineering 28
2.6.3 Domain Engineering Techniques in KobrA 30
2.6.4 Generic Process Support in KobrA 31
2.6.5 Summary 31

3 Requirements of the E-Business Domain 32
3.1 Workflow Reference Model 36
3.2 Workflow Aspects 38
3.3 Formal Workflow Representation 41
3.4 Summary 43

 viii

4 Characteristics of Software-based Automotive
Processes 45

4.1 Characteristics of Electronic Systems in the Automobile 46
4.2 Characteristics of Software-based Control Processes in

the Automobile 47
4.2.1 Control Functions 48
4.2.2 Real-Time Requirements 50
4.2.3 Distribution and Networking 51
4.2.4 Reliability and Safety 53
4.3 Summary and Conclusions 54

5 Languages for Process Modeling 55
5.1 Modeling Automotive Processes 55
5.1.1 Requirements for the Automotive Domain 56
5.1.2 Languages Supporting Automotive Processes 57
5.1.3 Summary 64
5.2 Modeling Processes in E-Business 66
5.2.1 Requirements for the E-Business Domain 66
5.2.2 Recommended Notation 67
5.2.3 Summary 70
5.3 Conclusions 71

6 Outlook 74

7 References 75

 1

1 Introduction

This report analyzes several aspects related to the modeling of variant-rich
processes and their use to specify families of service-oriented applications.
The results of the different analyses will be brought together in the further
course of the PESOA project to enable the modelling of variant-rich or
generic processes that capture processes for a number of related
applications.

The analyzed aspects are:

• Domain Engineering Techniques (chapter 2): in this chapter the
requirements for modeling generic processes are elicited and the
process support of different existing product line engineering approaches
is discussed.

• E-Business Domain (chapter 3): this chapter presents the special
characteristics of the e-business domain with respect to modeling e-
business processes.

• Automotive Domain (chapter 4): this chapter presents the special
characteristics of the e-business domain with respect to modeling e-
business processes.

• Process Modeling Languages (chapter 5): in this chapter the current
state with respect to process modeling languages is presented. A special
focus is set on modeling processes in the two domains presented in
chapters 3 and 4.

Chapter 6 finally concludes this report and provides a brief outlook into how
the results presented here will be used in the further course of the PESOA
project.

 2

2 Product Line Engineering for Process Families

In the following chapter, we will motivate the introduction of a Product Line
Engineering approach for Process Families. First, we will describe how a
product line engineering for product families looks like and introduce the two
main phases of a product line engineering approach, domain engineering
and application engineering. After that, we briefly introduce an incremental
product line engineering approach that could be used for process family
engineering in the context of the PESOA project. We will describe to what
degree the incremental product line engineering approach must be adapted
for process families and how well already existing activities are capable for
the process engineering task. In the final section of this chapter, several
product line and domain engineering methods are briefly described and their
qualification for process family engineering is discussed.

2.1 Motivation

Product line engineering stands on a middle ground between specific assets,
which are used for single system development and only once used, and
general assets, like general use libraries or components that are applicable
anywhere. The idea is to define a Product line, which captures the intended
scope of reuse. The products included in a Product Line are determined to
have sufficiently common characteristics to make it more efficient to study
the commonalities and variabilities for all products of the Product line and to
build reusable assets, than to study and build all the products separately.
Product line engineering approaches define how to leverage the
commonalities and create reusable assets that increase the efficiency of
developing the products [Bayer99a].

One benefit of the Product Line approach is the idea that all members of the
Product Line are based on a single set of assets. Thereby, the maintenance
effort is reduced to this single asset base. Hence, existing products must
always follow the evolution of the asset base. This is done by instantiating
the changed domain model while reusing the existing resolution of the
domain decision model.

2.1.1 Product Line Engineering

Product line engineering can be described as a technology providing
methods to plan, control, and improve a reuse infrastructure for developing a
family of similar products instead of developing single products separately.
This reuse infrastructure manages commonality and controls the variability

 3

of the different products. Examples for Product Line approaches are PuLSE
[Bayer99b], Fast [Weiss99] and the SEI Product Line Practice Initiative
[Clements01].

The core idea of applying a product line engineering approach to process
families is to analyze a set of processes and exploit their commonalities
systematically rather than modelling process by process individually. This
implies that information in a process family context is mainly concerned with
multiple processes and their variations. A solution to this is structuring such
information by comparing a set of processes but keeping the information on
each individual process separately visible. Distinct from single system
software development there are two life cycles, domain engineering and
application engineering (cf. Figure 1). Domain engineering analyzes
information on individual processes, integrates it by consideration of
commonalities and variabilities, and stores the integrated information as part
of the product line infrastructure. Application engineering uses the integrated
information and specializes it according to the needs of a particular service
request.

Figure 1- Product Line Engineering two lifecycle approach

Three activities performed during domain engineering are the domain
analysis, which means determining what the family is about, the domain
design, which complies with deciding which platform components are
needed, and the domain implementation that involves building and buying
components and supporting infrastructure. According to this, application
engineering also involves three activities. Application analysis determines
what the products should be, the application design selects the appropriate
components to make these products and the application coding combines

 4

the components by using the infrastructure and possibly additional product-
specific code.

In a product line engineering development approach [Chastek02],
[Donohoe00], [Nord04], the characteristics of multiple related systems are
handled and captured in an integrated way. That is, information is captured
by product line artefacts that are focused on comparing common and varying
characteristics of particular similar systems. A product line artefact can be
defined as an artefact that captures product line concepts such as
commonalities or variabilities in an integrated and explicit form. A product
line artefact that captures no variabilities is identical to an artefact used in a
single-system context. Example product line artefacts are feature models,
textual requirements documents, business process models, UML class
diagrams, or C-source-code files.

In the context of process family engineering, it would be necessary to
capture additional information about variant process parts in a similar way,
which means that process artefacts that are focused on a specific
application domain have to be added to the product line engineering
approach. In that case, the process artefacts contain commonalities as well
as variabilities of processes.

2.1.2 Domain Engineering

Domain engineering analyzes an application domain, its abstract concepts,
entities, and relationships in order to build a reference model for systems in
the domain including domain-specific reusable artefacts. The term artefact
subsumes all kinds of work products manipulated by development activities.
Concrete applications are then constructed mainly by reusing the domain
specific artefacts, which represent the domain concepts or features required
for the concrete application. In the case of process family engineering, the
development of reusable process assets is the prominent goal. The domain
engineering task will be to build up a reference process model for the
processes in the analyzed application domain and the explicit specification
of the domain-specific reusable process artefacts.

Domain analysis or domain modelling is requirements engineering for
product lines. The goal of any domain-analysis approach is to identify and
document requirements on a set of products in the same application domain
in order to make development and maintenance activities more efficient. The
results are captured in domain model. The domain model must capture both
the common characteristics of the products and their variations. This domain
model is then the basis for creating other reusable assets like a domain
specific language or a component-based architecture. At an abstract level,
the domain analysis process starts with an application domain, analyzes all
the diverse requirements on products in that application domain, identifies
common and variable requirements, and finally documents this information

 5

in form of an integrated domain model. Example variant requirements that
are captured by a domain model are:

• Optional requirements: requirements that do hold for a particular system or
do not hold

• Alternative requirements: a set of requirements of which only one or a
subset holds for a particular system

• Range requirements: requirements that specify the potential range for a
numerical value, which is supported by the domain model instead of the
specific value as required by a single system

Figure 2 - Generic process model

For a domain analysis method to be applicable it must be appropriate and it
must provide enough guidance so that it can be carried out. As in other
areas of software development, the context for each domain analysis
application varies, and methods that are appropriate in one context will not
be in others. This fact is especially important for domain analysis because of
the compound effects of inappropriate models over multiple products and
over the whole lifecycle. Therefore, a generally applicable domain analysis
method should be customisable to the context of the application.

 6

The analysis of a domain for process family engineering comes up with a
domain model that captures all aspects of the processes in that application
domain. These aspects, common or variant for the diverse processes, are
then integrated into the generic process model.

The above picture illustrates the domain analysis task. Two products or
processes of an application domain are analyzed during the domain analysis
step of the incremental product line engineering approach. The result of that
task, the generic process model, captures both the common and the variant
parts of the application domain processes by integrating the information in
generic artefacts. The application engineering task would then be to use
these generic process artefacts to specialize the generic process for a
specific application.

At this point in time, an emerging issue is how to model and notate such a
generic process model and especially the variable parts, which means the
generic artefacts, of the generic model. The notation used in the above
picture is just an example notation based on the ARIS process modelling
language. A mechanism for dealing with generic components and their
integration into product line artefacts is variability modelling, which is
described later in the incremental Product Line Engineering section.

2.2 Incremental Product Line Engineering

An incremental Product line engineering approach for product families
consists of several activities that have to be added to the development
processes concerned with requirements, architecture, design,
implementation, or testing for single-systems. The advantage of an
incremental approach is that existing products and processes can be further
used with minimal adaptations. The product line aspects are then integrated
in the development process by adding additional activities to it.

An incremental product line modelling approach described by [Muthig02]
introduces three activities that are added to the software development
process in order to comply with product line aspects. These activities are:

• Variability Modelling

• Decision Modelling

• Application Engineering

In the beginning of an incremental product line development process, a new
product is developed as in a standard single-product development process.
If a new product is modelled, or a new asset is created that has not been
required by previous products or a new functionality is added to an already

 7

existing generic artefact, the new asset as a whole is considered as an
optional asset for the product line asset base and no variability must be
modelled.

Variability Modelling requires that the product line context must be taken into
account by identifying all elements of an artefact that are variable across
different products. Generic artefact elements are then used to generically
model these variabilities. The variant parts of a generic artefact yield so
called variation points that must be resolved later to specialize the artefact to
the needs of a particular product context. Variation points of a generic
artefact capture what may vary in the artefact and how it may vary.

The relationships and dependencies among variation points across all
generic artefacts of a product line infrastructure are typically not explicitly
captured as part of the generic artefacts themselves. These relationships are
defined separately in form of a decision model. A decision model is a
product line artefact that captures relationships among variation points in a
set of generic artefacts. This is done during decision modelling by integrating
the variation points into the decision model by relating them with other
variation points, as well as with decisions from related generic artefacts.

The picture below illustrates the relationship between variation points of
generic artefacts of different development levels, i.e. requirements,
component, implementation.

OPT-Requirement : A library user may
reserve books.

<<variant Komponent>>
Reservat ionManager

<<variant Komponent>>
Reservat ionManager

#if VAR_RESERVATION == YES
ReservationManager *rm;

#endif

Reservat ionManager?

reservat ion?

RESERVATION?

Product Line Artifacts Decision Models

...

...

Figure 3 - Variation Points and Decision Models

The decision model is used to capture the relationship of variation points
describing the same variability but on different abstraction levels. In the

 8

example, the variability described in the above picture is the possibility to
reserve books. This variability is expressed in different generic artefacts all
over the product line development process. The first row describes the
variability in a requirements document, the second row corresponds to the
design document and the last row models the variation point on the
implementation level.

The instantiation of generic infrastructure artefacts by resolving all variation
points for a particular context is performed during application engineering.

In order to apply such an incremental product line engineering approach for
process family oriented development, several activities must be modified by
adding mechanisms for generic process family engineering. In the following
section, the activities of Variability Modelling, Decision Modelling and
Application Engineering are introduced in more detail concerning the
modifications required for process family engineering.

2.2.1 Variability Modelling

The variability modelling activity is concerned with the generically integration
of variability into a product line artefact. This can be done by using generic
product line artefacts. The solution is to replace all elements related to a
specific variability with the corresponding specialized generic artefact. The
modelling element that covers the variability in a generic product line artefact
is a variation point. Variation points of a generic artefact capture what may
vary in the artefact and how it may vary. The relationships and
dependencies among variation points across all generic artefacts of a
product line infrastructure are typically not explicitly captured as part of the
generic artefacts themselves. These relationships are defined separately in
form of a decision model, which is created during decision modelling.

In order to introduce generic artefacts for process family engineering,
variation points must be included in the process models and process
specifications. As it was already mentioned in the previous sections,
variation points occur on different specification levels, like requirements,
design or code. Thus, the integration of variation points to product line
artefacts for process family engineering depends on the respective process
specification level that means variation points must be expressed by
graphical elements in mere graphical process descriptions like ARIS but also
in process specification languages like BPEL. Therefore, the exact structure
of a variation point inside a generic artefact for process family engineering
depends on the used representation form of the generic artefact.

 9

2.2.2 Decision Modelling

The decision modelling activity produces and maintains the decision model.
That is, it captures the relationships between newly modelled variation
points, as well as among new variation points and previously existing
variation points. Typically, decision modelling follows a bottom-up approach.
First, the constraints among newly modelled variation points are identified
and captured by constraining decisions. Then, these new decisions are
integrated into the decision model by identifying and modelling how they are
constrained by already existing decisions. Typically, the existing decisions
are related to artefacts that stem from the previous life-cycle stage and thus
have been input to the actual instance of product line modelling. For
example, decisions related to implementation artefacts are related to design
decisions, design decisions are related to requirements-related decisions,
and so forth. In general, all decisions must eventually be related to other
decisions because only the variability is modelled that has been requested.
That is, the goal is to get the simplest generic artefact that exactly covers the
needed variability.

An example decision model is illustrated in the table below.

Table 1 - Decision model

A decision variable is a unique identifier for a variation and corresponds to a
specific row in the decision model. A decision variable can be used for
several variation points (e.g. a decision variable SERVICE_INPUT is used at
each variation point where the service input has to be chosen). Each of the
decision variables that is defined in the decision model is in turn described
by the following information:

• Name: The name of the defined decision variable; the name
must be unique in the decision model

• Relevancy: The relevancy of a decision variable for an
instantiation may depend on other decision variables, e.g. the
decision variable describing the memory size in the above
example is only valid if the decision variable describing the

 10

existence of memory is true. This can be made explicit by the
relevancy information.

• Description: A textual description of the decision captured by the
decision variable

• Range: The range of values that the decision variable can take
on. This can be basically any of the typical data types used in
programming languages.

• Cardinality: The cardinality defines how many of the values of a
decision variable can be assumed by it.

• Constraints: Constraints are used to describe interrelations
among different decision variables. This is used to describe
value restrictions imposed by the value of one variable onto
another variable.

• Binding times: A list of possible binding times, describing when
the decision can be bound. This can be source time, compile
time, installation time, etc.

2.2.3 Application Engineering

Application engineering is the process that interacts with customers of
particular product line members. When a new product is initiated due to a
customer or market request, application engineering is started. It reuses as
much as possible from the product line infrastructure to build a product.
Based on the decision model that contains all points of variation in the
infrastructure and that relates them to functions of the resulting applications,
a specific product line member is derived from the infrastructure. The result
is an application that can be deployed. Therefore, it instantiates the generic
infrastructure artefacts by resolving all variation points for the particular
context. Then, required product characteristics that are not covered by the
infrastructure are added.

 11

Figure 4 - Process family application engineering

Application engineering for process families would instantiate the generic
process models by resolving the variation points in the generic artefacts.
This includes the instantiation of the generic process models that are part of
the process family infrastructure. The above picture illustrates the
instantiation of the generic process model, containing the variation points. By
solving the decisions of the decision model and thus keeping domain
specific characteristics in mind, a model instance is derived that fulfils the
intended process. Especially in the context of service orientation, this phase
would instantiate the generic models by resolving the decision model
containing also relations of the different services. The result would then be a
service-oriented application that can be applied.

2.3 Feature-Oriented Domain Analysis (FODA)

The Feature-Oriented Domain Analysis (FODA) method was originally
developed by the Software Engineering Institute (SEI). According to
[Kang90] the method was developed to “support the systematic exploration
of related software systems in order to discover and exploit commonality.”
The underlying idea is the analysis of features, which the user expects to be
in the application.

In the context of the PESOA project and the underlying task to support
service-oriented applications and families of processes, the FODA method

 12

could hence be used to analyze the services, which the user expects to be in
the application and thus “support the systematic exploration of process
families and the discovery and exploitation of common services”.

The FODA process consists of three major activities: Context Analysis and
Domain Scoping, Domain Modeling, and Architectural Modeling. The
process is visualized in Figure 5. In the following, we briefly introduce the
three activities and explain the impact of service-orientation to the original
activities. Although FODA uses the term feature for the underlying modeling
concept and is thus used in the following description of the FODA method, it
is possible to substitute the term feature with service to comply with the
service-orientation theme.

2.3.1 Context Analysis and Domain Scoping

The definition of the scope of a product line is an essential task of product
line modeling. This part of the FODA process is responsible for the scoping
task and the results are documented in the context model. A context model
describes what is “in” and what is “out” of the product family’s boundary.
FODA uses structure diagrams and data-flow diagrams (context diagrams)
to describe the context model. Structure diagrams show the relationship of
the target domain with other surrounding domains, e.g. higher-level
domains, sub-domains, or peer-level domains. The data-flow diagrams
describe the data-flows and communication links between the domains,
identified in the structure diagram.

The context analysis specifies if a component is reusable in different
contexts. It is important to know how a component should be structured so
that it can be adapted to different contexts. For example, the user interface
part of a software application should be modeled in a way that it can be used
for different terminals without extensive modifications. Thus, a context
description is especially important if the system or the component is
intended to be used in various contexts of the same domain. If a domain
contains a large degree of variation in its usage contexts, it should be
rescoped to a narrower domain [Kang90].

 13

Figure 5 : The FODA-Process

2.3.2 Domain Modeling

In this phase of the FODA method, the main task feature analysis is
performed. The purpose is to identify the functionality the user expects to be
in the application and to build a model of the product family that captures this
information. With the resulting feature model, the commonalities and
variability of the product family members are described. Adapted to the
service-oriented applications, the feature analysis would be used to identify
the services the user requests and to build a model of the process family.
FODA uses several concepts to describe certain aspects and
interdependencies of features [Kang90].

Types of features: FODA supports three types of features: mandatory,
optional, and alternative features. These concepts describe if a functionality
or in our terms service must be available, could be available or is variant.

Groups of features: FODA allows the grouping of certain features with the
relationship “consist-of.” This proceeding is performed to deal with large and
complex feature models.

Feature Dependencies: FODA supports the dependencies “mutual-
exclusive” and “requires.”

Context
Analysis

Domain
Modeling

Feature
Analysis

Informatio
n Analysis

Operation
al Analysis

Structure
Diagram

Context
Diagram

Domain
Dictionary

Feature
Model

Information
Model

Operational
Model

Produces

Process Steps

 14

Feature binding time: FODA supports the following binding times: compile-
time, load-time (e.g. for systems that are configured at the beginning of the
execution), or run-time.

Feature categories: FODA distinguishes features after the following
categories: operational features (active functions carried out by the
application), context features (environmental characteristics), and
representation features (how information is presented).

During domain modeling, two additional work products are produced. First,
an entity-relationship model (information model) is generated to capture
domain knowledge in the terms of domain entities and their relationships.
And second, an operational analysis is performed to structure the common
operational features of the domain.

2.3.3 Architectural Modeling

In this phase, a technical solution to the domain model is developed. The
architectural model represents a high-level view on the architecture and its
different layers. The layering is performed so that reuse can occur at the
appropriate layer for a given application.

2.3.4 Representation Form

As product line modeling methods are often described in the form of process
models, they also have to make use of notations to describe the contents of
their models. In the case of FODA, no specific notation is prescribed. This
leads to the problem of identifying a proper notation for the particular
context. FODA often proposes the use of hierarchical based diagrams to
represent the feature model. Feature diagrams are modeled as trees with
the root representing a basic concept or product and leafs representing
single features. Additional graphical elements are added, to describe feature
types and constraints. E.g. a circle denotes an optional feature, while a
double line represents an alternative. A simplified feature diagram is
presented in figure 6.

 15

Figure 6 : FODA Feature Diagram

2.3.5 Summary and generic process engineering support with FODA

The major terseness of the Feature-Oriented Domain Analysis (FODA)
method for process family engineering is that it only addresses the domain
analysis and modeling task of the domain engineering phase. As already
discussed in section 2.2 an incremental product line engineering approach
has to address not only domain engineering but also application engineering
and variability modeling issues. Both aspects are not covered by FODA.
Support for the variability modeling is only provided as it identifies the
variabilities in the domain. A further support for generic process artifacts is
not provided. FODA does not support the instantiation of generic models to
specific instances during application engineering except that it provides input
for the decision model, which is used to capture constraints of the variation
points. The FODA method as introduced in the former section can be used
only for domain analysis and modeling issues, required for the decision
modeling aspects of product line development. A process family oriented
adaptation of the FODA method could therefore only be useful for domain
modeling when integrated into a holistic process family engineering
approach.

2.4 Family-oriented Abstraction, Specification, and Translation Process

The Family-oriented Abstraction, Specification, and Translation Process
(FAST) was developed by David M. Weiss at Lucent [Weiss99]. FAST is a
domain modeling process for product lines, which aims at providing a fast
development of software products and an automated generation of new
product line members. The necessary product specifications for the
automated generation are described in domain-specific languages. The
generated product line members share common requirements, designs, and
code. As FAST is a complex domain modeling process, only the part of the
commonality analysis will be presented in this report.

Product A

F1 F2 F3 F4 F5

 16

In the following description of the FAST process, the term product family or
product line is used to describe the initial process. The usage of the term
process family instead of product family seems to qualify FAST to be applied
in the service-orientation and PESOA context.

2.4.1 Commonality Analysis

The commonality analysis part of the FAST process aims at identifying and
modeling all common and variable parts of a product family. The
representation form of this specification document is a simple textual
notation. Independent of the specific domain of the product line this section
is always described in the same form. The specification of commonality and
variability contains two parts, one for each of them. The commonality part
contains all requirements which are common to all members of the product
line. The variability part covers all requirements varying for member to
member. The only difference in describing common or variable requirements
is a specific label which identifies a requirement as common “C” or variable
“V.” The next figure shows an example document of FAST for the domain of
Car radios [Doerr02].

Figure 7 : FAST Document Example

Commonality

C-1 A cassette player is mutual exclusive to a CD player.

C-2 The disc naming feature requires a CD changer
… …

Variability

V-1 Some products have an MP3 decoder

V-2 The number of supported discs in the changer varies
… …

 17

2.4.2 Comments on the Example

The different types of requirements in the above shown example represent
different types of variability and decision constraints. The common
requirement C-1 describes a “mutual-exclusive” constraint and C-2 specifies
a “requires” constraint. The variability V-1 is an “option” and V-2 represents
and “alternative,” without specifying the exact value of the variable
component. This specification is performed with the help of the “parameters
of variation,” which are documented in another section of the commonality
analysis document. The “parameters of variation” section is a specific table
which describes the range of variation for the different variabilities. In
addition, the binding time of the decision and a default value are specified.
The respective entry for the variabilities V-1 and V-2 would be:

Parameter of
Variation

Value Space Binding Time Default

MP3 decoder Yes, no Specification time no

CD Changer

Capacity
6,10 Specification time -

Table 2 : Parameters of Variation

In the introduction it was stated that FAST uses a domain specific language
for describing the software specification. This issue refers to the concepts
and terms used in the description of the commonalities and variabilities.

2.4.3 Summary

As shown in the above example, FAST uses a strong textual based
representation form for describing commonalities and variabilities. As nearly
every type of terms and identifiers can be used for the specification, the
method seems to be appropriate for many different domains. As already
addressed in the summary part of FODA, FAST is also only a description
method for domain models and thus supports only the domain analysis part
of a process family engineering approach. Varaibility modeling with generic
artifacts and application engineering is not supported by FAST.

In addition to that, especially in the case of strong technical based software
processes or products with a large specification the documentation
complexity increases very fast. The reason is that domain specific aspects
must be described with natural language. In addition to the increased
complexity, the chance of ambiguities is also increased. Besides the

 18

ambiguous requirements, interrelations between different functionalities or
requirements are also hard to detect. Domains with many interacting
features or system components are hard to describe with FAST.

As discussed above, the applicability of FAST for generic process families is
not given as to many aspects of a process family engineering approach are
not covered.

2.5 PuLSE (Product Line Software Engineering)

PuLSE is a method for enabling the conception and deployment of software
product lines within a large variety of enterprise contexts. This is achieved
via a product-centric focus throughout its phases, customizability of its
components, an incremental introduction capability, a maturity scale for
structured evolution, and adaptations to a few main product development
situations. The domain models captured during the development process
and the identified variabilities in the domains provide the characteristics and
features for a domain-specific system.

In the following, we briefly introduce the PuLSE components and the impact
of generic process orientation to the PuLSE components. Figure 8 shows an
overview of PuLSE.

 19

Figure 8 PuLSE overview

PuLSE is centered around three main elements: the deployment phases, the
technical components, and the support components.

2.5.1 Deployment Phases

The deployment phases are the logical stages of the product line life cycle.
They describe the activities performed to set up, use, and evolve product
lines. The impact of generic processes to the deployment phases is not
significant, as the phases can be applied in the same way for service-
oriented applications with generic processes as for products. Therefore, we
only briefly introduce the deployment phases as described in the initial
PuLSE method. The deployment phases are PuLSE initialization phase,
which is used to customize PuLSE to the context of its application, the
Product line infrastructure construction phase, which sets up the product
line infrastructure by scoping, modelling, and architecting the product line,
the Product line infrastructure usage phase, which uses the infrastructure
to create a single product line member, and finally the Product line

 20

infrastructure evolution phase that handles the evolution of the product
line.

2.5.2 Technical Components

The technical components provide the technical know-how needed to
operationalize the product line development. They are used throughout the
deployment phases. Thus, the impact of process family and service
orientation is inherent to these components. The technical components will
experience the most significant impact of service and process family
orientation.

The initial technical components are:

Baselining and Customization (PuLSE-BC)

This component baselines the enterprise and customizes PuLSE. The result
is an instance of PuLSE — that is, instances of the other technical
components — tailored to the specific application context.

Economic scoping (PuLSE-Eco)

PuLSE-Eco is used to identify, describe, and bound the product line. This is
done by determining the characteristics of the products that constitute the
product line. Economic scoping in PuLSE means that the scope is
determined with respect to business objectives and planned products. The
output of PuLSE-Eco are the product characteristic information and the
scope definition. These outputs together describe the contents of the product
line. The product characteristic information describes the common and
variable characteristics of all products in the product line. The scope
definition identifies the range of characteristics that systems in the product
line should cover. The basis for the scope definition is a product map that
relates the characteristics to the different products. A product map is a table,
which lists the characteristics mentioned in the product characteristic
information as its rows and the products as its columns. The table cells
contain a cross when a product contains a characteristic.

At the moment, product maps are only used for products and functionalities.
Concerning the goal to develop service-oriented applications, the product
map must be modified. The modifications require that the map does not
relates products and functions, but service and processes. A possible
service map is shown in the picture below.

 21

Service: User
Identification

Service: Availability
Check

Service: Credit
Payment

Process: Book
Reservation Yes Yes No

Process: Flight
Reservation No yes Yes

Table 3 - Service Map

The example shows two reservation processes, one for books in a library
and one for flights. As it is shown in the table, the service to identify a user at
the beginning of a process and the service to check the availability is
required by the book reservation process. The flight reservation process also
requires an availability check service, but it is not needed to have a user
account, but therefore you can pay with a credit card. This is just a small
example of how to analyze domains for service-oriented applications.

Customizable Domain Analysis (PuLSE-CDA)

The elicitation of the requirements for a domain and the documentation of
them in a domain model (a.k.a. product line model) are done by PuLSE-
CDA. A product line model is composed of multiple workproducts that
capture different views of a domain. Each view focuses on particular
information types and relations among them. In the workproducts, common
requirements (commonalities) and requirements that vary for the different
systems (variabilities) are modeled. Therefore, they are referred to as
generic workproducts. There are three types of variabilities: optional,
alternative, and range requirements. Each generic workproduct has defined
meta elements for each variability type. Meta elements indicate points of
variation and enable the instantiation of the workproducts. The variabilities
(expressed by meta elements) are connected to decisions that, when
completely resolved, specify a particular system, a member of the product
line. The decisions are at different levels of abstraction and are hierarchically
structured based on constraints among them. The decision hierarchy is
called the domain. To specify a particular system in the product line, the
product line model is completely instantiated. The instance of the product
line model is generated by passing all resolutions of the decisions to the
connected meta elements, which instantiate their corresponding part of the
product line model.

As already discussed in the domain engineering section, an emerging issue
is how to model and notate generic process models and especially the
variable parts, which means the generic artefacts, of the generic model. The

 22

meta elements described above will influence the most significant
modifications as they have to be adapted to express process related
information. It is also necessary to analyze, to which degree, additional
variabilities must be included in a domain model. At the moment only
optional, alternative and range requirements can be expressed.

Domain Specific Software Architecture development (PuLSE-DSSA)

The development of a reference (or domain specific) architecture based on
the product line model is done by PuLSE-DSSA. A reference architecture
description consists of multiple models that describe different views on the
reference architecture. Each of the views is composed of view-specific
components and connectors that describe the architecture from a different
perspective. Similar to a product line model, a reference architecture
description is an architecture description that also captures variability in the
architectures for the different systems in the product line. During the
reference architecture development, certain decisions arise that are not
driven by the domain. These decisions may introduce domain-independent
variabilities. The resulting decision model is called the architecture decision
model. An optional output of PuLSE-DSSA is a prototype that may have
been created.

The impact of process orientation to this component is especially during the
view creation phase of PuLSE-DSSA. As stated above, a reference
architecture description consists of multiple models that describe different
views on the reference architecture. Additional views describing the
processes and the service mapping must be included.

Instantiation (PuLSE-I)

The Instantiation component is used to specify, construct and validate one
member of the product line. This encompasses the instantiation of the
product line model and the reference architecture, the creation and/or reuse
of assets that constitute the instance, and the validation of the resulting
product. Additionally, reusable assets that are needed, that have not been
created yet, are developed and put into the reusable asset base.

This phase is not affected much by the process family orientation as the
required information for generic process families must be provided by the
above introduced components. If the required information is available, an
instantiation process will work as for product families.

 23

Evolution and Management (PuLSE-EM)

Guidance and support of the application of PuLSE throughout the
deployment phases initialization, construction, usage, and evolution is done
with PuLSE-EM. PuLSE-EM is centered around three basic tasks: product
line management, evolution, and learning. Product line management
provides means for scheduling and coordinating the technical components,
as well as for observing the product line and its environment to be able to
respond quickly to emerging needs. Product line evolution supports
systematic change request processing. This includes the evaluation of
change requests and the assessment of their effects on existing parts of the
product line infrastructure. Learning analyzes the product line and changes
that occur over time. The goal is to learn about patterns of product line
evolution that would allow for acting in anticipation of future problems,
needs, or changes. Additionally, PuLSE-EM includes the configuration
management framework that underlies and supports the product line
infrastructure.

This component requires no changes for generic process support.

2.5.3 Support Components

The support components provide guidelines that support the other
components. The support components need not to be changed to support
generic process families:

Project Entry Points

Project entry points are guidelines to customize PuLSE for a set of standard
situations. For example, in reengineering driven PuLSE projects, legacy
assets are a major source of information and guidelines on how to integrate
them are given in the respective entry point.

Maturity Scale

It is used to evaluate the quality of a PuLSE process application in
enterprises with the intention to identify and improve weak points. The levels
on the scale are: initial, defined, controlled, and optimizing.

Organizational Issues

For PuLSE to be most effective, an organization structure has to be set up
and maintained that supports the development and management of product
lines. Guidelines on how to do that are given here.

 24

2.5.4 Generic Process support in PuLSE and summary

When talking about families of processes or generic processes for service-
oriented application development, the product-centric focus of PuLSE is
obviously not sufficient to cover the relevant aspects introduced in section
2.1. Process relevant aspects must be covered throughout the whole
development cycle. But as PuLSE is only a framework for Product line
engineering it seems to be capable for generic process support. The
changes that must be made for generic process support are maily inside of
the individual components of PuLSE. The changes, which have to be done
have been briefly discussed in the respective descriptions of the PuLSE
components. The techniques for incremental product line engineering,
introduced in section 2.2, variability modelling, decision modelling and
application engineering, are already an integral part of PulSE and supported
by the different technical components of PuLSE.

To summarize the above discussion, PuLSE directly supports incremental
product line engineering and can be customized towards supporting process
family engineering by modifying the technical components.

2.6 The KobrA Method

The KobrA method represents a synthesis of several advanced software
engineering technologies, including product line development, component-
based software development, frameworks, architecture-centric inspections,
quality modelling, and process modelling [Atkinson01]. These have been
integrated into the KobrA method with the basic goal of providing a
systematic approach to the development of high-quality, component-based
application frameworks.

All products are organized around, and oriented towards, the description of
individual components. This means that, as far as possible, there are no
global or system-wide products - all products (and accompanying processes)
are defined to carry information only related to their particular component.
The advantage is that components (and the products that describe them)
can then easily be separated from the environment in which they were
developed and therefore can be reused independently.

From a product line perspective, the KobrA method represents an object-
oriented customization of the PuLSE method. The infrastructure construction
phase of PuLSE corresponds to the framework engineering activity, the
infrastructure usage phase of PuLSE corresponds to the application
engineering activity, and the product line evolution phase of PuLSE
corresponds to the maintenance of the frameworks and applications. The
purpose of the framework engineering activity is to create, and later
maintain, a generic framework that embodies all product variants that make
up the family, including information about their common and disjoint

 25

features. The purpose of the application engineering activity is to instantiate
this framework to create particular variants in the product family, each
tailored to meet the specific needs of different customers, and later to
maintain these concrete variants. A given framework can therefore be
instantiated multiple times to yield multiple applications. In fact, the
framework and application engineering activities both result in descriptions
of components in terms of a mixture of textual and UML-based (graphical)
models. The difference between the two is that the framework models
potentially contain variabilities, while the application models do not. The
advantage of using the UML is that the KobrA method is model-based and,
therefore, frameworks and associated application are independent of any
particular programming language or component technology (e.g., Java
Beans, COM, CORBA). The transformation of an application into an
executable form is carried out in a distinct set of activities that are essentially
orthogonal to the framework and application engineering activities. The
implementation activity takes instantiated UML models and maps them,
through a series of well-defined refinement and translation steps into an
executable representation (e.g., high-level source code) [Bunse01]. Finally,
the build activity actually creates binary load modules ready for deployment
in the target environment.

2.6.1 Framework Engineering

In the KobrA method, a framework is the static representation of a set of
components organized in the form of a tree. Each component is described at
two levels of abstraction: a specification, which defines the component's
externally visible properties and behaviours, and thus serves to capture the
contract that the component fulfils, and a realization, which describes how
the component fulfils this contract in terms of contracts with lower level
components. A framework, therefore, is a tightly coupled arrangement of
component specifications and realizations.

Figure 9 shows the general set of UML models, which make up component
specifications and realizations. To start the framework development process,
the context of the component at the root of the tree is modelled. Since this
takes the form of a realization it is known as the context realization.
Subcomponents are then identified, their specifications derived from the
context realization models, and finally the subcomponents realizations are
designed. This is performed recursively until no further subcomponents are
required. The framework is a reuse infrastructure for creating systems within
the application domain. The family aspects are captured by decision models,
which are a part of all specifications and realizations. The decisions relate to
variabilities in the domain that are explicitly reflected in the models of the
generic framework. The explicit modelling of variability is done using
stereotypes in UML diagrams and tags in textual models.

 26

Context Realization

Framework engineering starts with the elicitation of the environment
properties for the planned system family, including the determination of the
framework's scope. However, the application of KobrA requires a particular
set of models at the end of context realization, which is needed to begin the
recursive KobrA development process. These models correspond to the
models used for realizing components. The current focus of modelling is set
on enterprise resource planning applications. Therefore, enterprise models
that capture the important concepts and processes of an enterprise
application are the starting point for developing the context realization. The
other models used are the same as in a component realization.

Component Specification

The goal of component specification is to create a set of models that
collectively describe the externally visible properties of a component. As
such, the specification can be viewed as defining the interface of a
component and describing the services a component provides to its parent.
The specification of a component is comprised of four main models: the
structural model, the behavioural model, the functional model, and the
decision model. The structural, behavioural and functional models constitute

Figure 9. KobrA Component Model

 27

the specification models for a component as it is used in all applications
covered by the framework. The decision model contains information about
how the models change for the different applications.

The specification of a component is comprised of the following four models:

• Structural Model: Captures the nature of the classes and relationships by
which a component interacts with its environment, as well as any
structure of the component that is visible at its interface. The structural
model consists of a number of UML class diagrams that captures the
externally visible structural elements a subject component interacts with
and a number of UML object diagrams that capture the externally visible
parts of run-time configurations of a component and the components it
acquires.

• Behavioral Model: describes the reaction of the component to external
stimuli using UML statechart diagrams.

• Functional Model: addresses the functionality of a component by
describing the externally visible effects of the services provided by the
component. The behavioral model contains an operation schema for
each of the services a component provides.

• Decision Model: The structural, behavioral and functional models
constitute the specification models for a component. If the component is
a generic product line component, an optional decision model contains
information about how the models change for the different instances of
the product line component.

Component Realization

The goal of component realization is to create a set of models that
collectively describe the private design of a component. As with all design,
the basic requirement is that the realization must realize the component's
specification. A component's realization is comprised of four main models:
the interaction model, the structural model, the activity model, and the
decision model.

A component’s realization is comprised of the following four models:

• Structural model: captures the classes and relationships from which the
component is realized, as well as its architecture. The realization
structural model is a refinement of the specification structural model. It
consists of a number of UML class diagrams that capture the structural
elements a service component interacts with and a number of UML

 28

object diagrams that capture the run-time configurations of the
component and the components it interacts with.

• Activity model: covers the realization of the functional aspects by
describing the algorithms by which the services of the component are
realized using UML activity diagrams.

• Interaction model: provides different aspects on the algorithms used to
realize operations, from the perspective of instance interactions rather
than flow control (as in the execution model). UML collaboration
diagrams are used in the interaction model.

• Decision model: as in the specification, the optional decision model
describes the model changes for the different instances of a product line
component.

Another possible way of realizing a specification is to reuse pre-existing
components such as COTS components or reengineered legacy
components. To achieve this, parts of the specified interface are matched to
the interface supplied by the pre-existing component. When the two
interfaces are the same they are said to be in "mutual interface" agreement
and the supplier component can be integrated in the component framework.
If the two interfaces are not initially the same, changes must be made to the
reused component and/or the client component in the framework.

2.6.2 Application Engineering

Application engineering uses the framework built during framework
engineering to construct specific applications in the domain covered by the
framework. The application engineering process is centred on the given
framework and driven by the framework's decision models. The framework is
traversed in a top down manner, recursively resolving decisions until all the
generic framework models are transformed into specific models for the
particular application. According to the common separation of requirements
engineering and system design, the application engineering process is split
into two primary steps: context realization instantiation and framework
instantiation. These are described in more detail in the following two
subsections.

Application Context Realization

The instantiation of the framework's context realization is the first major
activity of application engineering. It starts when the software development
organization has established an initial contact to a potential customer who is
interested in a software system in the domain of one of the organization's

 29

frameworks. The outputs of this process are the context decisions and a
concrete realization of the application's context. Ideally, a consultant handles
interaction with the customer during this activity. The role of a consultant is
played by a person who is an expert with respect to the application domain
and to applications based on the existing framework. The consultant elicits
the requirements for the application to be developed while working with the
customer to identify problems.

The elicitation process is driven by a decision sequence derived from the
decision model of the framework's context realization. This strategy for
requirement elicitation is tightly coupled with the framework because exactly
the alternatives supported by the existing framework are provided to the
customer. The offering of a set of possible alternatives also simplifies the
elicitation process because it corresponds to the selection of one of the
provided choices. Only when none of the supported alternatives meets the
customer's needs must the required properties be explicitly modelled during
requirement elicitation. The framework alternative that is the closest to the
required one serves as the input for the modelling activity. Hence, the
alternative not yet supported by the framework can be expressed by means
of differences to requirements supported by the existing framework. This
approach supports the incremental product line engineering described
above.

When all decisions in the decision model of the framework's context
realization have been resolved, the main phase of the elicitation process is
finished. The result is a concrete instance containing a set of models that
realize the context of the particular application to be developed. In addition
to the instances of the generic framework models, customer-specific
requirements that are not part of the framework can be added to extend the
application context realization.

Framework Instantiation

The instantiation of the framework is the second major activity of application
engineering. It starts when the application context realization is (partially)
created and thus also the context decisions (partially) exist. The context
decisions are used to initially instantiate the generic component hierarchy of
the framework. This is achieved by identifying decisions at lower levels in the
component hierarchy that are connected to decisions resolved during the
instantiation of the framework context realization. These lower-level
decisions are then resolved in accordance with the resolution of the
connected context. The intermediate result is a partially instantiated
component hierarchy which is an application tree with unresolved points of
variation, and decision models that contain the still unresolved decisions.
These unresolved decisions relate either to design-related issues or user
requirements that have not been handled during requirement elicitation. Both

 30

kinds of unresolved decisions are fed back to the consultant who is
responsible for their resolution. The consultant resolves them either
personally, together with the customer, or together with the developers.

All resolutions are collected as decisions in the appropriate place in
component hierarchy. In addition to the resolution of the decisions provided
by the decision models of the component hierarchy, customer-specific
requirements must be realized and therefore integrated into either the
framework or the instantiated models of the particular application. If it is
expected that other customers in the future will have the same requirements,
the generic integration of the realization of customer- specific requirements
is the preferred alternative. The determination of whether the framework can
support the new requirements must, in general, be performed by the
organization. If the new requirements are integrated into the framework,
there will be a decision in the framework concerning the new requirements.
The application engineering process then resolves the new decision and
instantiates the new framework models so that the new requirements are
part of the application tree. On the other hand, if the new requirements are
not integrated into the framework, they must be modelled exclusively for the
particular application in hand and integrated into the already instantiated
framework models. The decision models support the integration process by
indicating where in models points of variation already exist and where there
are similar variants integrated or attached to the framework models.

Throughout the whole instantiation of the component hierarchy, consistency
between adjacent layers, as well as the internal consistency of each
specification and realization must be ensured. When no unresolved decision
points are left, all customer-specific requirements are separately modelled
and integrated and the application has successfully passed all quality
assurance activities, the application engineering process is finished. The
final results are the application decisions consisting of the context decisions
and the component hierarchy decisions, together with the application
realization and the application tree.

2.6.3 Domain Engineering Techniques in KobrA

The KobrA method is a complete product line engineering method that
supports the development of generic frameworks of components. These
generic frameworks can play the role of a product line infrastructure alone.
The KobrA method specifically supports the three domain engineering
techniques listed above. Variability modelling is supported by the UML
conformant use of stereotypes to denote variability in UML models and by
tags in textual models. Decision modelling is realized by the tabular,
hierarchical decision models used in the KobrA method during the
application engineering process.

 31

2.6.4 Generic Process Support in KobrA

The KobrA method uses mainly UML diagrams for modelling generic
components. The used models include activity diagrams in the realization of
components. These diagrams, however, play a specific role in the modelling
of components, that is, to capture the algorithms that realize operations a
component provides. For the use of the KobrA method for process-based
definition of families of applications, the existing activity diagrams can,
therefore, not be used. Instead the context realization must be adapted to
support the process-based definition of generic component frameworks. This
can be done by replacing the currently present (rather simple) means to
capture processes by appropriate process models. Using the present
techniques for modelling variability and decisions, such integration can
easily be done. The remainder of the KobrA method need then not to be
changed.

2.6.5 Summary

As discussed above, KobrA directly supports the domain engineering
techniques and can be customized towards also supporting generic process
families.

 32

3 Requirements of the E-Business Domain

As other strong growing domains, the e-business domain is under
continuous change and development. There is even no commonly agreed
definition on the term e-business [Schildhauer03, Lück04, Mertens01]. The
roots reach back to 1997, where IBM used it as a derivation of the terms e-
mail and e-commerce. It resembles the conduction of business in the
internet including buying and selling but also services and collaboration. In a
broader sense, it deals with the application of modern computer systems
and networks for business purposes.

Figure 10: Overview

Business

Business Processes

Business Process Model
(e.g. EPC’s)

Workflow

Business Process
Management

......Code
(Java, C, …)

......ERP
(SAP R3, …)

... ?

E-Business can be established by the use of varying techniques. Mail and
telephone could be replaced by e-mail and voice-over-ip systems,
warehouses could be managed electronically and even the whole
accounting could be outsourced to another company with direct and
immediately access. As the scope of the PESOA project is process-
orientation, the business processes a company has are of main interest (see
Figure 10). The business processes could be made explicit in so called
business process models [Becker03]. Typical examples are Event-driven
Process Chains (EPC) as proposed by the ARIS method from IDS-Scheer
[Scheer01] or the newer Business Process Modelling Notation (BPMN) as
proposed by the Business Process Management Initiative [BPMN]. Possible
implementations of such business process models into the it-infrastructure
traditionally resulted in specialised programs written in standard
programming languages like Java or C or pre-selected process parts in

 33

ERP-systems such as SAP/R3. All those solutions contain the business
processes implicit in their code. But as the data-management has been split
from the actual code in the 70’s by the emerging of databases and the user-
interface management has been brought apart in the 80’s by the use of
standard GUI’s and frameworks, the explicit representation of the processes
will gain further advantages. As a programmer has no need to code data-
management and graphical interface runtimes for his product, a workflow
engineer will have no effort in implementing the business processes into the
it-infrastructure. He can use his potential to specify, define, optimize or
administrate the processes. After having used the term workflow, it is
defined as “the computerized facilitation or automation of business
processes, in whole or in part” [Hollingsworth95]. This definition was given
by the Workflow Management Coalition (WfMC), which also defined a
reference model that is introduced later on. The term Business Process
Management (BPM) resumes the concepts of mapping business processes
to business process models and their workflow representation which can be
used for execution, simulation, resource planning, optimization, and so on.
Those workflows are the key issues of the PESOA project in the context of
the e-business domain. Different but yet similar workflows should be
generated by the use of Software Product Lines to adapt to specific
customer needs in short times.

Figure 11: Simple Workflow

A1 A2

After introducing the general concepts of the e-business domain in the
PESOA project, further key issues will be depicted. Figure 11 shows a
simple workflow that a company might have. In this example, the workflow is
represented as a Petri net. The company is represented by a box around.
The workflow represents the parts of a business process that can be
executed and supervised electronically. As the processes are made explicit,
they can be recognized and changed easily. The workflows inside a
company are also called intra-organizational workflows to distinguish them
from workflows between different companies.

 34

Figure 12: Inter-organizational Workflow

A B

A1 A2
B1

B1

Request

Response

This case is shown in Figure 12. There is the introduced company, now
labelled A and a new one, labelled B. Company B represents its intra-
organizational workflow by the use of the Business Process Modelling
Notation (BPMN). The companies communicate to work together and
achieve an outcome. The process of the interaction between different
companies that could involve different ontologies and process languages is
called inter-organizational workflow.

Figure 13: Blurring borders between intra- and inter-organizational workflow

A B

A1 A2
B1

B1

Request

Response

... ...

(Virtual) Enterprise C

Unfortunately it is not that easy, as shown in Figure 13. A and B could be
seen as different departments of an enterprise or as two companies that
have been merged and now form a kind of virtual enterprise. This formation
has internal and communication processes, but to the outside world it looks
like a single company, represented by the box around. There is also
communication with companies outside, represented by the boxes below.

The key issues of workflows are the activities or tasks. Those are steps that
have to be done to produce an outcome, for instance A1 and A2 in Figure
11. They require an ordering, input data and humans, machines or
computers to accomplish them. The Workflow Management coalition
established the mentioned reference model that describes the execution
environment of workflows. Workflows also have different perspectives, or
aspects. They refer to the things that are required to execute a workflow and
will be discusses later on. An in deep description of the topics around
workflow can be found in Production Workflow [LEYMANN00], whereas

 35

Business Process Management – The Third Wave [SMITH02] gives an
outlook on future requirements.

Even as the term e-business is somehow fuzzy, it can be divide into three
main topic areas. First, there are internal business systems, which resemble
classical business processes like customer relationship management
(CRM), enterprise resource planning (ERP), knowledge, document
management, and so on. Those processes are called intra-organizational
workflows. This workflows form the key issue of the domain e-business in
the PESOA project. Another important topic in the area of e-business is
enterprise communication and collaboration. This includes e-mail, forums,
chat-systems, black-boards, conference and other collaborative work
systems. As those are usually used in an ad-hoc fashion, without pre-
defined processes, they are out of scope in the PESOA project. The third
topic is electronic commerce; it includes business to business (B2B) and
business to customer (B2C) relations. This topic resembles the
communication aspect between different companies or market participants.
As stated, there is no clear boundary between processes in and outside of a
company. However, the interoperation of companies with others is denoted
as inter-organizational workflow in contrast to intra-organizational workflow.
Even the definition of the term e-commerce is somehow ambiguous. The
Lexikon Electronic Business states that there exists no clear, explicit
definition [Schildhauer03]. It can be seen as the digital execution of business
processes between companies and customers by the use of global public
and private networks [Mertens01].

The last topic might become important for the PESOA project in the near
future. In the service-oriented world, as propagated by the W3C, there is a
difference between orchestration and choreography of web-services, which
resemble the concepts of intra- and inter-organizational workflows [W3C].
Furthermore, several levels of contracts between different inter-
organizational workflows could be established. They could regard the (1)
syntactical and interface level, (2) behaviour represented by pre- and post
conditions, (3) synchronizing contracts that resemble dependencies between
different services companies offer, and (4) quality of service contracts which
represent non-functional properties like response, throughput and costs. In a
broader sense, there exists a bunch of standards for each area such as
OWL [OWL], WSDL [WSDL], UML/OCL [OCL], CTR-S [Davulcu98] and so
on. Other issues include transactions, as workflows can be seen as some
kind of long-running transaction [Haugen02, Papazoglou02]. Also security
must be regarded through all levels of abstraction, starting from an
agreement of security goals, the security analysis, design and policies as
well as network access and authorization down to protocol implementation
issues. Transactions and security are out of scope in PESOA as they form a
broad research area of their own. The other areas of e-commerce might
come into play as needed.

 36

The introduction to the e-business domain is continued with the workflow
reference model that resembles the core requirements for workflow.

3.1 Workflow Reference Model

In 1995 the Workflow Management Coalition published issue 1.1 of their
Workflow Reference Model [Hollingsworth95]. It describes a so called
Workflow Management System that allows the explicit representation,
controlled execution and monitoring of workflows. It provides the procedural
automation of business processes and is thereby a core element of e-
business from. Even if the Workflow Reference Model is a bit outdated, as in
the time it was written the terms e-business or service-oriented architectures
were quit unknown, it defines main components that are required for
workflow enactment that still hold today.

Figure 14: The Workflow Reference Model

Workflow
Engine(s)

Workflow Enactment Service

Workflow API and Interchange

Process Definition

Administration &
Monitoring Tools

In
te

rf
ac

e
5

Workflow
Client

Application

Interface 2

Invoked
Applications

Interface 3

Workflow
Engine(s)

Other Workflow Enactment
Services

Interface 4

Interface 1

The reference model is shown in Figure 14. The core component is the
workflow enactment service. This is a service that consists of one or more
workflow engines and is responsible for creating, managing and executing
workflow instances. Applications may use the workflow application
programming interface (WAPI) to communicate with this service. A workflow
engine provides run time environments for workflow instances. The workflow
engine typically handles the interpretation of process definitions, controls the
process instances, creates workitems, calls external applications, and so on.

The workflow enactment service has five different interfaces to external
components as shown in the reference model. The first interface describes
the connection to a workflow definition tool. This tool or a set of tools allow

 37

for workflow analysis, design and definition. The workflow definition is
converted to an interchange format and transferred to the workflow
enactment service. This interface is the hot spot for the PESOA project in
the e-business domain. The goal is to create executable workflow definitions
which are generated out of a product-line. The type or format of these
definitions depends on the workflow engines that are used by the customers.
A modern standard is the Business Process Execution Language for Web
Services (BPEL4WS) [BPEL] which is XML-based. The remaining
components depend on the workflow definition but are out of scope in
PESOA as there are a lot of different commercial solutions available on the
market. The components will be outlined for a better view of the big-picture.

The interfaces two and three require some fetch-ahead of the next section,
Workflow Aspects. Interface two defines a connection to Workflow Client
Applications. Those are applications that show worklists consisting of
workitems for particular persons. Each workitem represents a task that has
to be done by some employee. The allocation of workitems to specific
employees is part of the workflow enactment service. Interface three
specifies how external applications that are required to perform a task could
be invoked. This might for example be a printjob or something else.

Interface four defines workflow interoperability by passing workitems
seamlessly between different workflow enactment services. This is useful if
other departments or companies run their own workflow enactment services
and interaction is required.

The last interface, interface five, defines the integration of administration and
monitoring tools. This includes user and role management functionality, audit
operations, resource control operations, process supervisory functions and
process status functions.

Even as the Workflow Reference Model is quite old and lacks a lot of
modern techniques and developments, it is useful to show the connection of
Workflow Management Systems, which form a core element of e-business,
to the PESOA project. A detailed description of the reference model can be
found in [Hollingsworth95].

 38

3.2 Workflow Aspects

Workflow modelling aims at specifying different perspectives of the activities
that have to be done to produce an outcome, the ordering of the activities
and the technical and organizational environment. Those different
perspectives of workflow are made explicit by different workflow aspects.

The first thing is what has to be done; those are the steps or activities that
are required to produce an outcome. This what can be hierarchically refined
into smaller whats or steps until an atomic level is reached that should or
cannot be parted anymore. This aspect is the functional aspect and it
consists of complex and atomic activities. The whole workflow can be seen
as a complex activity.

The activities require some ordering that defines how they are related with
each other. For example, an activity pay invoice should only be executed
after an activity check goods has been executed. The aspect that regards
the ordering of activities is called the behavioural aspect; it can be
represented by control flow. The behavioural aspect also defines other forms
of relationships within a workflow like what a starting and what a terminating
activity is.

Another important aspect is the modelling of workflow relevant application
data. This is covered by the informational aspect. Each activity gets a set of
input and output parameters assigned that are used to transfer the workflow
relevant data through the process. The so called data--flow must not
necessarily follow the control--flow. The initial data of a workflow instance is
usually a specific case which has to be processed.

Workflows are not executed by themselves; this is done through people or
machines that are categorized into different roles. This is called the
organizational aspect. This aspect defines which role is responsible for
executing an activity and the workflow engine has to resolve the roles to
specific persons or machines.

For the successful execution of activities, tools and applications outside of
the workflow engine are needed. The integration is covered in the
operational aspect. It defines how external programs like Office, E--Mail or
Online--Banking are integrated into the workflow.

 39

Figure 15: Example of the Workflow Aspects

A

Claim

B

C

D

E

Agent

Expert

Financial
Officer

Assistant

Customer Word
Processor

Online
Banking

What:
Functional

When:
Behavioral

from to

Case data:
Informational

Who:
Organizational

How:
Operational

A detailed description of the workflow aspects can be found for instance in
[Weske98,Weske00]. Figure 15 shows an example of how the different
workflow aspects tie together. To abstract from certain existing notations, a
simple approach based on circles that represent the different workflow
aspects is used. The behavioural aspect is represented by a line. A legend is
contained in the right hand side of the figure.

The example represents a simplified insurance claim. The workflow starts
with activity A where a customer assigns a new claim. The claim is initially
attached to the input of the first activity; it represents the case-data. Each
claim belongs to a customer that is represented by the organizational
aspect. As the process evolves, the claim is passed on to activity B and so
on. Activity A is processed by a person of the role Agent. The same role
processes activity B, where a letter to the customer is prepared that states
that the claim is currently being processed. It requires the use of an
operational entity, a word processor, to write the letter. After the letter has
been written, the claim is analyzed by two independent members of the role
Expert. This is represented through the activities C and D. If the claim has
been accepted, a member of the role Financial Officer uses an online-
banking application in activity E to initiate a payment. Note that several
activities like writing a final letter or the reject of the claim are not modelled
to keep the example simple. Additionally contained is the hierarchical
grouping of the roles Agent, Expert and Financial Office into a role Assistant.

 40

From the view of the PESOA-project, one important aspect is missing – an
aspect that covers variability. This aspect has not yet been investigated as a
workflow aspect. One goal of the PESOA-project in the e-business domain is
the formulation of this aspect. Today there exist many similar workflows in
different implementations at the customer’s side. Often this is just one
“master” workflow with variants. The pieces, or assets in the product line
domain, consists of activities or compound activities like write a letter,
charge a customer, backorder items, etc. Other assets might include role
definitions, operational properties and data-containers. It is one goal of the
PESOA-project to develop new methods and technologies that allow the
efficient construction of workflows from an asset base. This is why variability
is an important aspect for workflows in the PESOA domain and must be
researched further on.

The behavioural workflow aspect can be seen as the most import one. As
shown in figure 3.6, all other aspects follow this one. Activities without an
ordering are useless as well as case or role information are. One could also
see the functional aspect that is represented by the activities as central.
However, this aspect is implemented by standard techniques and is
therefore not this interesting for the PESOA-project.

Different types of behaviour in workflows have been collected as Workflow
Patterns [van der Aalst00]. The main contributor, Wil van der Aalst has
established a website where all patterns can be experienced interactive
[WP]. The patterns are split into six categories. The first category covers
basic control flow patterns like sequence, AND and XOR joins and splits.
The second category contains advanced branching and synchronization
patterns like OR join and split a discriminator and n-out-of-m joins. A n-out-
of-m-join is a special kind of OR joins that waits for n out of m incoming
paths before it continues. The third category describes structural patterns;
those are arbitrary circles and implicit terminations. The forth category deals
with pattern that involve multiple instances. The fifth category contains state-
based patterns like a milestone, whereas the last category deals with
cancellation patterns. The Workflow Patterns have been used to compare
different workflow notations. The more patterns a notation supported directly,
the better it was rated. More information can be found in [van der Aalst00,
van der Aals03, van der Aals02b] and the website mentioned.

Another important kind of patterns are Communication Patterns that are
based on the informational aspect. Those patterns are used to describe the
interactions between companies – that is inter-organizational workflow.
Those companies use messages and thereby data-flow to communicate.
There are synchronous communication patterns like Request/Reply, One-
Way or synchronous polling and asynchronous communication patterns like
Message Passing, Publish/Subscribe and Broadcast [van der Aalst02a].

 41

Another pattern – the Interruptional Pattern – interrupts a running activity by
the use of communication and specifies a new outgoing control flow. This
pattern can be found in modern notations like BPMN and BPEL, and can
also be used to model exception and cancellation handling. It combines
behaviour as well as communication represented by the informational
aspect. This pattern has not been investigated well, although it can be found
in recent notations like the BPMN where intermediate events are placed on
the border of activities.

3.3 Formal Workflow Representation

After having introduced different workflow aspects, it has to be specified how
to represent them. From the PESOA project description [PESOA] it can be
assumed that a graphical notation to create variant process models as well
as at least one execution language is required. They will be considered and
evaluated in a separate chapter. This section considers another problem –
that is the sometimes imprecise syntax and more often the ambiguous
semantics of graphical workflow notations. Current notations that combine
several workflow aspects, like UML activity diagrams, BPMN or EPK’s, are
only specified semi-formal. An informal approach might be easier to
understand by non-expert users but has disadvantages in the generic E-
Business domain as well as for the PESOA project. The PESOA project
requires the automated code generation by the use of product lines,
whereas many graphical notations are mainly used for human-
communication which does not require formal foundations.

By having an explicit representation of the syntax and semantics of
workflow, several key issues in the E-Business domain regarding the
PESOA project could be solved. The most important issue is the mapping of
graphical workflow notations to executable languages or other notations.
This regards to the required code generation of the PESOA project. If a
computer wants to transform a graphical workflow notation into an
executable notation like BPEL, he needs an unambiguous, formal definition.
By providing this, an automated mapping will give the results expected, while
otherwise the results are unpredictable or the mapping will be impossible.
The key point that needs to be done is selecting a consistent subset of an
existing notation and adding a formal syntax.

The second important issue covers the reasoning about workflows. In
addition to a formal syntax, this issue requires a formal semantic of the
workflow. The first point is the correctness of workflows [van der Aalst02b].
This includes qualitative and quantitative aspects. The qualitative aspects
define the so-called Soundness criteria that allow the proving of deadlock,
lifelock and proper termination. Soundness is a key issue in workflow nets
[van der Aalst97] but could be mapped to other notations as well. The

 42

quantitative aspect covers things like performance, time and level of service.
If a workflow conflicts with those criteria it can not be mapped and executed
correctly or will show false behaviour. An adequate formalization allows
avoiding those errors by proving the correctness regarding qualitative and
quantitative aspects. Another point covers constraints or properties related
to single activities. If each activity has formal defined pre- and post
conditions that do not only regard the syntax but also the semantics, the
consistence and completeness of a workflow could be proved. This include
knowledge like activity B could only be executed right after A or non-
functional properties. Similar, a workflow could have global and local
constraints [Arpinar99] that have to hold. Those constraints extend pre- and
post conditions by referring to different workflow instances to achieve a
global maximum value. This refers for instance to workflows that implement
storehouse and logistic where other concurrent workflow instances require
material that has to be made available just in time to minimize costs and
optimize performance. Such optimizations could only be done based on an
unambiguous, formal definition. However, the most important issue for
PESOA is the correctness of workflows regarding to variability concepts and
mechanisms.

Of course, the reasoning capabilities depend on the formalization chosen
(e.g. set-theory, graph-grammars, Petri nets, process algebra, ...). A
programming language can be seen as a kind of formalization as it is usually
based on an EBNF-grammar. However, this grammar only covers the
syntax; the semantics is often unusable for reasoning other then creating
traces of execution.

Other issues that might be reasons to formalize workflows are different
ontologies and distributed workflow systems. Their usefulness for the
PESOA has still to be evaluated; especially as those topics are quite
complex of their own. Nevertheless, with formalization, they are explicitly
permitted in later steps or extensions. The first issue is the automated
adoption to different ontologies. As shown in the introduction example, there
are several companies that conduct business. Each of those companies has
an explicit or implicit ontology that describes the concepts used in the
context or domain of the business. Those ontologies might be similar if the
businesses are residing in the same domain or up to totally different in other
cases. As usually competitors don’t do businesses which each other, there
are often different ontologies that must be matched. When the different
business processes are represented as different workflows in different
companies, automatic matching of the syntax and semantics to make them
work together might be wanted. While a human might be able to match semi-
informal ontologies, a computer does not – he needs a unambiguous, formal
definition [Schlenoff99, PSL]. The next issue covers large scale workflow
systems. Those systems require the distributed execution of workflows on

 43

several computers. This includes the off-line execution of worklist items as
for example an agent processes some activities on client side using his
laptop. To be able to split workflows onto different machines and make them
available on and offline requires an unambiguous, formal definition. The key
issues include synchronization aspects which would be impossible if the
semantic of a workflow is imprecise [Alonso97, Bauer01].

The disadvantages of formalization include the complexity and
incomprehensibility by non-expert users. Both problems can be solved by
the usage of tools that are able to formalize graphical workflow notations and
advice the user in creating, correcting and optimizing their workflows.
Additionally, formalism would give an academic strength and correctness to
the variant workflow definitions.

3.4 Summary

This chapter introduced the core requirements of the e-business domain for
the PESOA-project. Business processes in the context of e-business are
called workflows as they represent the computer executable parts of the
business process. There is a distinction between intra- and inter-
organizational workflows, where intra-organizational workflows represent
single workflows within a company and inter-organizational workflows
describe the interaction between different companies. The different workflow
aspects such as functional, behavioural, organizational, operational, and
informational have been introduced shortly. An aspect missing that has to be
researched in the scope of the PESOA-project is variability for workflows.
The behavioural aspect is the most important one and has been researched
most. A result thereof is a list of commonly used patterns, called Workflow
Patterns. Those patterns can be typically found in intra-organizational
workflows. Another kind of pattern that is important are communication
patterns which describe communication in inter-organizational workflows. In
the last section it has been stated why the PESOA-project requires
unambiguous workflow definitions as the scope is automated code
generation based on product lines.

The PESOA-project requires the definition of variant workflow models in the
e-business domain. Variant workflow models are the equivalence to variant
process models in the broader PESOA domain. This includes intra- as well
as inter-organizational workflows, the ease of configuration and
changeability and the application to software product lines with the goal of
generating executable workflow definitions.

The follow up research requires the development of concepts, methods and
techniques to create, verify, and optimize variant workflow models that are

 44

built of small workflow assets. Therefore, a generic framework that supports
three key issues is needed. The main goal is a graphical notation for the
design of variant workflow models which is backed by a formalization to
reason about workflows and allow the third issue, the automated code
generation, respective the generation of executable workflow descriptions.
The project description requires the adoption of existing solutions to the
PESOA-project. They will be discussed in another chapter. The notations
and languages should at least support the behavioural workflow aspect for
intra-organizational workflow as well as communication for inter-
organizational workflows. They should be extendible to support the idea of
variant workflows models.

 45

4 Characteristics of Software-based Automotive Processes

Today, the functionality incorporated into the automobile is being
implemented using electronic systems to a greater and greater degree. More
than 80% of all future innovations are expected to be carried out in the field
of electronic systems alone [Leen02]. The developments in this area are, in
particular, driven by the demand for low fuel consumption and reduced
emissions as well as the desire for enhanced safety and increased comfort.

Figure 16: The Development of Electronic Systems in the Automobile.

Already we find that numerous functions in the car are monitored and
controlled electronically. Compared to their mechanical counterparts, the
benefits of electronic systems lie in their higher reliability (regarding wear),
lighter weight, more compact packaging, and lower costs. And certain
features such as the electronic stability program ESP could not be
implemented without the integration of electronic systems.

This report sets out the characteristics of the electronic processes in the
automobile. The focus lies on those processes that are based on software.
Section 4.1 describes the characteristics of electronic systems in the vehicle,
thereby presenting the context in which the processes considered here run.
Finally, Section 4.2 addresses the characteristics of software-based
processes in the automobile.

 46

4.1 Characteristics of Electronic Systems in the Automobile

From a technical view, the electronic systems in the car are comprised of
electronic control units, sensors (including directors such as the gas or brake
pedal), and actuators. Figure 17 provides an overview of the sensors and
actuators deployed in the control of a gasoline-powered internal combustion
engine. The sensors and actuators themselves are frequently also systems
with electronic, hydraulic, pneumatic and/or mechanical components.

Figure 17: Input and Output Data of the Engine Control Unit for Direct Fuel Injection
[EL03].

The electronic control units are the core components of an electronic
system. They implement the functional logic: the sensor data received are
processed in the control unit and control signals are then sent to the
actuators as a result of the calculation. The control units themselves are
comprised of microprocessors, program/data memory, and input and output
units with the related software routines. Bus systems link the control units to
form a complex network. More than 100 control units are typically found in
the premium cars on the market today, and all these devices interoperate in
a variety of ways.

 47

Typical for the control unit is its hardware-oriented deployment in a technical
environment. The vehicle operator and passengers merely have an indirect
influence – if any at all – on the functionality of the control units. What is
processed are primarily signals and physical variables. In our context, we
thus also speak of embedded systems in connection with control units: the
software running on a control unit is called an embedded system. In general,
embedded systems can be described as dedicated hardware-software
systems that take on specialized functions within a defined (and, in most
cases, technical) context.

The control unit resources, for example, power rating, memory,
communication, are typically limited, being tailored to their particular tasks.
As cars are produced in large volumes – for example, over 440,000
Mercedes-Benz C-Class vehicles were manufactured in the year 2003 alone
[DC03] – resource restriction and effort optimization in control units play key
roles, especially with a view to economy.

4.2 Characteristics of Software-based Control Processes in the Automobile

Due to the great degrees of freedom in their deployment, control functions
are increasingly implemented using software. Depending on the vehicle
type, more than 80% of all vehicle functions built into cars today are
supported by software.

Where, in the past, the mechanical connection between the gas pedal and
the throttle valve was effected by means of a cable, so that pressing or
letting up on the gas pedal had a direct impact on the opening or closing of
the valve, today the signals from the gas pedal are captured electronically
and transmitted to the engine control (e-gas). In the engine control, the
signals are used together with the current state of operation of the engine to
control the throttle valve drive. Since other influencing factors such as the
exhaust gas recirculation and engine speed are also taken into account in
the computation of the throttle valve opening or closing, the position of the
gas pedal now has only an indirect impact on the position of the throttle
valve (for example, when the maximum revs are reached, pressing on the
gas pedal will have no influence at all on the opening of the throttle valve).

Additionally, using software to realize engine control enables more accurate,
fine-tuned control of the engine. And this facilitates observance of the
requirements mandated by environmental regulations.

Based on the background of the characteristics of electronic systems in the
automobile as described above, the following section examines the key

 48

attributes of and demands placed on software-based processes. In the given
context, processes describe the possible consequences of the execution of
the related control functions. They are linked to the performance of technical
tasks, are executed in an event- or time-oriented fashion, and have a
defined end, for example, a control that has been executed, a tuned value
within a desired accuracy or a time limit.

4.2.1 Control Functions

Many functions in the car are of an open loop, that is, feedforward, or closed
loop, that is, feedback, control nature. depicts a simplified model for control-
oriented vehicle functions that illustrates how the torque is determined.
Including gearbox and chassis in determining the torque has an impact on
the control as well as on the controlled system. This enables more complex
control-oriented functions. For reasons of simplicity, we will use the generic
term control functions to encompass both feedforward and feedback control.

Figure 18: Example Control-Oriented Vehicle Function.

In feedback control, the process variable to be controlled, for example, the
torque, is continuously measured or calculated from other measured values
and compared to a defined reference value – in this case, the target torque.
Depending on the results of this comparison, the variable to be controlled is
adapted to the reference variable. In contrast to feedback, or closed loop,
control, the so-called open loop control only feeds forward.

 49

In general, control engineering speaks of technical processes in this context.
According to DIN 66201, technical processes are characterized by the
capturing and processing of (physical) state variables using technical
equipment. Examples for physical state variables are the temperature,
pressure, position. State variables unambiguously designate the current
state of the process. They are captured by sensors, for example,
temperature sensors, angle encoders, and influenced by the actuators such
as valves and relays.

An example for a feedback control process in the powertrain system is the
conversion of energy from the combustion of the gas-air mixture into kinetic
energy under consideration of driver information. This process encompasses
a variety of further (sub-)processes such as control of the throttle valve, fuel
injection, ignition, exhaust gas after-treatment, all of which are themselves
interconnected.

A key characteristic of physical variables is that they occur continuously: the
physical variable is as a rule present in the control unit as an input signal in
the form of a voltage. The value of the physical variable is determined by the
height of the voltage being applied. In addition to the physical variables,
digital information that can be assigned to certain events is also processed,
for example, messages on the basis of the Controller Area Network (CAN).

When using software to realize control functions, the physical variables are
mapped to function variables in the control unit. Refreshing of the function
variables is dependent on the sample rate. This parameter defines the cycle
time for measurement of the signals at the sensor and refreshing of the
function variables using the values of the respective state variables.

The sample rate is contingent on the system to be controlled and is a key
design parameter for engineering of the functions. The behavior of the
control function in the control unit is strongly dependent on the sample rate
selected. As a rule, a control unit processes several control functions, which
are assigned different sample rates.

Principally, control functions have the following tasks:

• Capture and analyze the physical state variables associated with the
technical process such as engine temperature, crankshaft angle,
throttle valve opening, and knock signal.

• Influence the technical process by, for example, computing and
adjusting the torque.

• Coordinate the process flow, for example, by coordinating the
adjustment of the throttle valve opening, fuel injection, ignition,
exhaust gas recirculation.

• Monitor the process flow.

 50

4.2.2 Real-Time Requirements

Often real-time demands are placed on the execution of control functions in
the vehicle. Strict observance of these requirements is paramount for many
of the vehicle functions such as the ignition or fuel injection.

In real-time systems, the execution of software functions has to keep pace
with the processes running in the system. For example, the engine control
has to consistently ensure timely calculation of the amount of fuel to be
injected and the time of ignition for each engine speed and each cylinder. A
key demand set for real-time systems is thus timeliness. It is not the
speediness that is decisive, it is the reaction within defined and predictable
time limits. The correctness of the system does not hinge solely on the result
of the calculations but also on when this result is produced. Due to the
parallel processing of software (sub-)functions, both concurrency and
synchronization are additional vital requirements for real-time systems.

Real-time demands with respect to software functions that are executed on a
control unit include the observance of both the defined time intervals when
processing signals and the maximum permissible latency time, for example,
for reacting to outside events or signal changes. Figure 19 shows the levels
of urgency when processing signals from sensors and to actuators in the
area of engine control.

Figure 19: Prioritization Relevant for Signal Processing of the Engine Control.

 51

According to [Schäuffele03], the sample rate is the underlying foundation for
the definition of real-time requirements for software functions. If signals are
exchanged between the functions of different control units, the sample rate
yields the real-time requirements for the data transmission, that is, the
periodic intervals in which messages are to be exchanged between the
control units.

If several software functions with different sample rates are to be
implemented using a single control unit or a control unit network, activation
of the software functions is executed in different tasks. A task is a job unit
that can potentially or actually be executed in parallel on a processor or a
network of processors. A task encompasses a sequence of (sub-)functions
with identical real-time requirements that are executed in a statically defined
order. When setting up the specifications for a real-time system, software
functions may need to be distributed to tasks, if necessary by splitting them
up into sub-functions [Labrosse02].

Moreover, when a real-time operating system is to be used, the real-time
requirements set for the tasks will need to be considered when configuring
the operating system, for example, the number and priority of the tasks (also
see [OSEK]).

The processing of incoming events or internal interrupts may lead to varying
execution times and processing sequences for the software functions. Here,
methods for schedulability analyses can be used to verify whether meeting
the real-time requirements is feasible. In such analyses, the number of tasks
and the specific basic conditions are examined to determine whether the
function is executable. A given number of tasks is executable if each task
keeps the deadline defined for its execution, that is, the point in time by
which the task is to be fully completed at the latest.

4.2.3 Distribution and Networking

In modern vehicles, numerous control units are installed, most of which
come with a steadily growing number of software functions. The functions
exchange signals with each other in many different ways. Only when the
software functions are networked can value-added functions such as the
electronic stability program (ESP), anti-slip control (ASR) or adaptive cruise
control (ACC) be realized.

From the technical view, the distribution of software functions to the control
unit network and the communication between the individual control units are
of particular importance. The distribution of the software functions to the
control unit network has a decisive influence not only on the network load
but also on the quality of the results of the software functions. The objective

 52

is thus to limit the complexity as well as the effort required for
communication when distributing software functions over the network. In
addition to the basic conditions such as the necessary computation and
communication performance or the fixed assignment of sensors and
actuators to specific control units, meeting requirements such as real-time,
safety, and reliability constraints needs to be considered [Schäuffele03].

Figure 20: Assignment of Control Functions to Microcontrollers and Control Units.

The communication between software functions takes place between the
different tasks on a control unit (inter-tasking) and the information exchange
across control units. Information is exchanged both synchronously, through
the time-wise coordination of processes, and asynchronously.

For the communication in the control unit network, only the time
requirements are of relevance, that is the cycle time prescribed for the signal
exchange between the functions of different control units. As a rule, the
signals associated with a sending function are processed by several
receivers with different time rates.

Two factors have a key impact on the quality of the results in signal
transmissions: the value discretization of the signals and the transmission
times enabled by the communication system. Moreover, the resolution
expected by a function as the receiver of a signal and the range of the signal
need to be considered.

The signals are assigned to messages in the communication system, for
example, the CAN. Several signals may be associated with a message. A
message is the informational unit that is exchanged between different control
units. The assignments between senders and receivers of information,

 53

signals and messages, and messages and cycle times for transmissions are
done using a communication matrix (K matrix).

4.2.4 Reliability and Safety

A trend in the automobile industry is the rising number of safety-relevant
electronic systems in the vehicle. Some well-known examples are the driver
assistance systems, which are geared to help the driver in critical situations,
and the mechatronics systems in the powertrain (keyword "x-by-wire"). And
a prerequisite for the approval of a vehicle model for operation in traffic is
proof of the required reliability and safety of such safety-relevant vehicle
functions. Hence, corresponding statutory regulations, standards, and laws
are defined to take this key aspect into account.

The safety requirements mandate the safe behavior of the vehicle in the
event of a failure or malfunction of a component, for example, by including a
fail-safe mode in the system. They guarantee the operability of the vehicle to
a certain degree: if, for example, a sensor should fail, default values may
used instead of measured values for the necessary computations (an
example is the so-called lambda probe). However, this is generally done to
the detriment of other aspects such as environmental requirements.
Reliability requirements are reflected in the demand for shorter repair times
or longer maintenance intervals. The reliability of the systems may be
impacted by failures or disturbances. Measures to enhance reliability are
thus aimed at preventing the faults or errors that would lead to a failure or
disturbance. Measures implemented to increase safety home in on a limiting
risk and target preventing the dangerous effects of faults or errors, failures,
and disturbances.

The requirements relevant for the reliability and safety of vehicle functions
are defined within the framework of reliability and safety analyses. Failure
rate and failure type analyses belong to the key investigations to be
performed. Additionally, risk analyses – for example, according to DIN 19250
or IEC 61508 – can be used to derive the safety-technical requirements for
the technical realization of the system as these frequently have a great
impact on elements of the system architecture such as the hardware,
software, sensors, and actuators – e.g. on the assignment of software
functions to control units in distributed and networked systems.

The prerequisite for the triggering of safety reactions is the reliable
recognition of disturbances and failures. Monitoring functions are essential to
ensure both the reliability and safety of electronic systems. They also have a
crucial impact on the system architecture. Often a monitoring system for
electronic control units is realized through a combination of hardware and

 54

software measures implemented for the monitoring of microcontrollers,
directors, sensors, actuators, and the control functions.

4.3 Summary and Conclusions

Control functions in the automobile are more and more often realized using
software. Processes describe the potential consequences upon the
execution of the related control functions in an electronic, hydraulic,
pneumatic and/or mechanical environment. Processes may be made up of
numerous sub-processes. In our context, processes are invariably linked to
the execution of technical tasks. They are initiated by an event and have a
defined end, for example, a control that has been executed, a value that has
been tuned to a desired accuracy, or a time restriction.

Many processes in automotive applications are to be considered under the
aspect of feedforward and feedback control. Of particular importance is the
great number of control-oriented processes in the vehicle, which are
themselves interlinked. Oftentimes these processes are subject to real-time
requirements. These include both the keeping of time intervals when
processing signals and the observance of the maximum permissible latency
time, for example, when reacting to external events or signals.

The number of control units and control functions integrated in the car is
increasing steadily. And it is only through the networking of control functions
that we gain networked systems, thus yielding value-added functions. Yet,
the networking of control functions also leads to a growing information
exchange between the processes involved. Thus, the distribution of software
functions to the control unit network and the configuration of the
communication system have a decisive influence on the network load and
the quality of the results.

The increasing number of safety-relevant systems in the vehicle requires the
transfer of safety-technical requirements to the system design. Such
requirements greatly affect the system architecture, that is the hardware,
software, sensors, and actuators, thus also exerting an influence on the
execution of the processes in the automobile.

 55

5 Languages for Process Modeling

One of the challenges of the PESOA project consists in finding a graphical
process modeling language suitable for being used in the context of process
family engineering. Existing process modeling languages may only be a
starting point since in order to be used in PESOA they have to be enhanced
by process family engineering specific concepts and notations. However, in
consideration of the huge number of existing process modeling languages it
wouldn’t make sense to start from the scratch defining an own modeling
notation. Instead it makes sense to consider existing approaches. In order to
be appropriate for acting as a foundation for a modeling language meeting
the PESOA needs the selected modeling approach in particular has to able
to properly represent the processes in the PESOA domains of application,
i.e. the e-business and automotive domain, which are characterized by
different requirements. Therefore this chapter will deal with the analysis of
existing process modeling languages concerning their suitability for being
used as a starting point for a PESOA process modeling language for e-
business and automotive processes. This examination will close with the
sketch of a common PESOA metamodel comprising the modeling elements
required in the PESOA project.

5.1 Modeling Automotive Processes

This section will examine the suitability of UML Activity Diagrams and UML
State Machines for modeling automotive processes. These techniques have
already been shown promising modeling the concrete automotive processes
provided by DaimlerChrysler Research. In order to analyze the suitability of
UML Activity Diagrams and State Machines the following subsection will
outline the concepts a process modeling language must be able to represent
in order to be suitable for describing automotive processes. The
requirements for process modeling languages summarized here have been
identified by the project partner DaimlerChrysler on the basis of their
experience with automotive electronics. The subsection after the next will
show that a combination of UML Activity Diagram and State Machine
elements is capable of depicting the relevant aspects of the automotive
processes considered in the PESOA project by analyzing them on the basis
of the requirement list for automotive processes. In addition to the mere
graphical representation there is a need for a formalization of the applied
modeling concepts. An approach for dealing with this requirement is
sketched as well.

 56

5.1.1 Requirements for the Automotive Domain

This subsection briefly summarizes the relevant requirements of automotive
processes.

A process modeling language suitable for representing automotive
processes must be able to describe the flow of control as well as the flow of
data between activities. Concerning the control flow especially routing
constructs for modeling iterations are required since in automotive
processes control cycles play an important role. Routing decisions may
depend on variable values, which is one reason for the required support of
variables. Since the electronics of a car is characterized by having
distributed systems interacting with each other a process modeling language
for automotive processes should provide some means for representing
asynchronous as well as synchronous communication. Also the parts of the
system involved in the communication should be identifiable. Just like in
processes of other domains of application also in automotive processes the
occurrence of an exception may lead to a deviation from the normal flow of
control in case of an error. Concerning the data flow, modeling elements for
representing data sources and data sinks are required as well as means for
describing the corresponding input and output data. Data sources and sinks
may also comprise data storages for the persistent storage of data. In
automotive processes the execution of a subprocess often depends on the
state of the system. The state change of the system and the execution of an
activity are often triggered by the receipt of an event. Automotive processes
are characterized by being subject to time requirements, which therefore
somehow have to be part of the process model as well.

In addition to these functional requirements, which determine the modeling
elements a suitable process modeling language has to provide, a modeling
language appropriate for being used in Process Family Engineering has to
have a number of additional properties that go beyond the pure graphical
representation of the considered processes. First of all since one goal of the
PESOA project is the generation of an implementation on the basis of a
process definition, the utilized process modeling language has to have an
unambiguous semantics. Else program code cannot be generated properly
on the basis of the process description. An unambiguous semantics is also
required for simulating the described process. Secondly qualitative as well
as quantitative analysis of an automotive process should be possible for
ensuring the accuracy and quality of the processes, which is crucial in the
context of automotive electronics. Qualitative analysis comprises
investigations of the correctness of a process like the absence of deadlocks,
livelocks and dead nodes [Van der Aalst02c] while quantitative analysis here
means particularly performance analysis. In order to be able to fulfill these
additional requirements we need a mathematically sound and unambiguous
definition of the process modeling languages used for modeling automotive
processes. Since this typically doesn’t apply to graphical modeling

 57

languages an additional mathematically precise representation is required.
This shall be achieved by formalizing the process modeling language
subsets required for modeling automotive processes.

5.1.2 Languages Supporting Automotive Processes

This subsection will analyze the process modeling techniques UML Activity
Diagrams and UML State Machines regarding their support of the
requirements for automotive processes as outlined in the last subsection.
More information about Activity Diagrams can be found in [UML, Born04,
Pender03, Schnieders04, Bock03a, Bock03b, Bock03c, Bock04a, Bock04b],
while State Machines are described in [UML, Born04, Pender03].

Activity Diagrams. The UML 2.0 specification defines so called compliance
points, which are parts of the UML specification and on the basis of which it
can be determined, to what degree a vendor of UML 2.0 tools supports the
UML specification. Depending on which compliance points he implements
the standard, his tool can reach for example the compliance levels “basic”,
“intermediate”, or “complete”. Basic Activities only comprise the most
essential modeling elements, while Intermediate Activities offer the modeling
elements needed in probably most applications. Complete Activities also
offer some advanced modeling constructs. Additionally there is a structured
level that allows for the modeling of traditional structured programming
constructs and an extra structured level that also supports exception
handling.

Concerning the control flow requirements for automotive processes, Activity
Diagrams differentiate between control flows and data flows allowing for
representing both types of flows explicitly. Activity Diagrams provide
elements for modeling the start and end of a process as well as elements for
modeling parallel and alternative flows, which represent the most
fundamental routing constructs in processes. In Basis Activities iterations
can be realized using a combination of reentering arcs and decision and
merge nodes. Alternatively with LoopNodes and ExpansionRegions
StructuredActivities offer elements dedicated solely for modeling iterative
behavior.

Concerning the data flow requirements Activity Diagrams offer Pins for
modeling the input and output data of Actions and ActivityParameterNodes
for the input and output data of Activities. Additionally CompleteActivites
provide ParameterSets for modeling mutually alternative sets of input or
output parameters. In order to indicate the name or type of a parameter the
respective information can be written close to the corresponding modeling
element representing the input or output parameter. Executable Nodes like
Actions and Activities or Object Nodes like CentralBufferNodes in
IntermediateActivities and DataStoreNodes in CompleteActivities are

 58

possible data sinks and sources in Activity Diagrams. A DataStoreNode is a
modeling element for indicating the persistent storage of data.

Events in Activity Diagrams can be raised using SendSignalActions. An
AcceptEventAction on the other hand is a type of Action that is activitated as
soon as an event of the indicated type occurs. An AcceptEventAction can be
triggered for example by a signal sent by a SendSignalAction or by a time
event. In Activity Diagrams Exceptions can be used to indicate deviations
from the normal flow of control. Exceptions can be handled locally using
ExceptionHandlers (ExtraStructuredActivities) or they can be forwarded via
certain output parameters indicated by the isException attribute
(CompleteActivities).

Variables in Activity Diagrams are used for example in Guards, in
decisionInputBehaviors for making routing decisions, in selectionBehaviors
(in CompleteActivities) for reading data from a DataStoreNode, in the
description of localPreconditions or localPostconditions of Actions (in
CompleteActivities), or in the form of parameter names of Pins or
ActivityParameterNodes.

Activity Diagrams allow for the modeling of asynchronous and synchronous
communication between two processes in different Activities as well as
between two subprocesses within the same Activity by means of
ActivityEdges, SendSignalActions, and AcceptEventActions. Figure 10 and

 59

Figure 22 give an example of how to model synchronous communication
between two subprocesses located in the same and in two different
Activities. Modeling an asynchronous communication could be modeled
even easier by just omitting the transmission and receipt of a reply message.

Figure 21: Synchronous communication between two subprocesses within the same Activity

Subprocess A Subprocess B

Receive
Message

Send
Message Message

Send
Response

Receive
Response Response

 60

Figure 22: Synchronous communication between two processes within different Activity

Additional information about the context in which a process is executed can
be provided using ActivityPartitions (IntermediateActivities) or UML
Comments. ActivityPartitions are typically used in Activity Diagrams to
assign domain-specific information to nodes and edges like for example the
person or class by which certain parts the process are executed. Therefore a
swimlane notation can be used. Alternatively a partition name can be placed
in parentheses above an Activity name. Moreover UML Comments are a
form of adding freeform text to any element in a model.

Concerning the representation of system states Activity Diagrams don’t
provide elements dedicated especially to this purpose. Even though it is
possible to transform a State Machine into an Activity Diagram a one-to-one
mapping of State Machine states to Activity Diagram elements is not
possible. Only State Machine states representing a behavior can be mapped
directly to an Activity Diagram Action while other types of states will only be
implicitly present in the resulting Activity Diagram. Figure 23 gives an
example for a State Machine and the corresponding Activity Diagram
representation. While “State A”, which is characterized by the execution of
“Activity_1”, is represented adequately by “Activity_1” in the corresponding
Activity Diagram, “State B” isn’t mapped on a concrete element and the
information about the existence of the state gets lost.

Receive
Reply

Receive
Reply

Send
Message

Send
Reply

Receive
Message
Receive
Message

Subprocess A SubprocessB

 61

Figure 23: A State Machine and the corresponding Activity Diagram

Activity_3

Activity_2

Event_2

Activity_1

Activity_3

Activity_2

Event_2Event_2

Activity_1

State A

do / Activity_1
State B

/ Activity_2

Event_2 / Activity_3

State A

do / Activity_1
State B

/ Activity_2

Event_2 / Activity_3

Except for AcceptTimeEventActions Activity Diagrams don’t provide means
particularly dedicated for adding time data to an Activity Diagram. Especially
there are no means for indicating the time it takes an executable node to
carry out a computation. A possible way for providing this information would
consist in the employment of UML Comments as shown in Figure 24.

Figure 24: Adding time constraint to Activity Diagrams using UML Comments

Processing
Time < x sec.

Adjust
Engine
Torque

Adjust
Engine
Torque

The UML Activity Diagram specification doesn’t contain a mathematically
sound definition of the Activity Diagram semantics, but only a textual
semantics description is provided which is scattered over the UML
specification due the dependence of other parts of the UML specification and
cannot be considered to be precise. Moreover parts of the Activity Diagram
semantics description even seem to be ambiguous.

State Machines. Concerning the modeling of flows State Machines are not
designed for the explicit modeling of data flows. Nevertheless there are
several ways for integrating Actions and Activities in State Machines. A state

 62

in a State Machine may for example have entry and exit Activities which are
executed when entering or leaving the state. Moreover there are states
which are characterized by the execution of an Activity. After having finished
the execution of the Activity the state is normally left via a guardless
transition. Additionally Activities may be assigned to a transition. These
Activities are executed when the transition fires. The Activities integrated into
a State Machine correspond exactly to the Activities as specified in the
Activity Diagram metamodel. Hence they can also have input and output
parameters of a specific type. In this spirit Activities in State Machines are
also data sinks and sources even though the data flow isn’t modeled
explicitly. Therefore no elements for representing the persistent storage of
data are provided either.

Regarding the control flow, which is represented explicitly, State Machines
provide so called pseudo states for modeling initial states, final states, and
the beginning and end of alternative and parallel processing. The latter is
supported by orthogonal state regions, which can be active at the same
time. Loops can be modeled using reentering transitions.

Events are one of the core concepts in State Machines. Triggers define the
types of events that may occur leading to transitions between states. There
are triggers that allow for a transition in reaction to an asynchronous signal,
triggers for transitions resulting from the invocation of an operation, time
triggers specifying a deadline at which a transition must take place, and
triggers recognizing the change in the values of some attributes of the object
modeled by the State Machine. The change of attribute values is recognized
by evaluating Boolean expressions. In contrast to Activity Diagrams State
Machines don’t support exceptions.

In State Machines variables can be used for example in input and output
parameters of Activities or in transition guards.

Just like in Activity Diagrams synchronous as well as asynchronous
communication in State Machines can be realized using integrated Activities
containing respective SendSignalActions. The receiving State Machine may
then react to the signal by means of a SignalTrigger.

Context information of a State Machine can be provided using UML
Comments. In contrast to Activity Diagrams State Machines don’t dispose of
a special notation for providing context information like ActivitiyPartitions in
Activity Diagrams.

As the name suggests states are another core concept of State Machines. In
state machines a state describes the condition of an object, which can be
described by the object’s attributes or by means of a behavior the object is
processing.

 63

Just like Activity Diagrams State Machines don’t provide any means for
displaying time data either. Again one possibility would be to assign UML
Comments with time information to the respective Activities or states.

Like Activity Diagrams, also State Machines have a textual semantics
description instead of a mathematically precise definition.

Figure 25 gives a summary of the requirements for a process modeling
language suitable for representing automotive processes and their support
by Activity Diagrams and State Machines.

Figure 25: Graphical process modeling languages and their support of automotive process aspects

Control Flow Data Flow Events
Routing

A
ct

iv
iti

es

Ex
pl

. R
ep

re
se

nt
ab

le

B
as

ic
 C

on
st

ru
ct

s

Ite
ra

tio
ns

Ex
pl

. R
ep

re
se

nt
ab

le

In
pu

t/O
ut

pu
t D

at
a

D
at

a
Si

nk
s

an
d

So

ur
ce

s
Pe

rs
is

te
nt

St

or
ag

e
of

D

at
a

ex
pr

es
si

bl
e

Ex
ce

pt
io

ns

U
til

iz
at

io
n

of
 V

ar
ia

bl
es

Sy
nc

hr
on

ou
s,

as

yn
cr

ho
no

us

C
om

m
un

ic
at

io
n

C
on

te
xt

 In
fo

rm
at

io
n

Sy
st

em
 S

ta
te

s

Ti
m

e
D

at
a

A
ct

iv
ity

D

ia
gr

am
s

X X X X X X X X X X X X X (X)

St
at

e

M
ac

hi
ne

s

X X X X X X X X (X) (X) X (X)

Representation of Time. Since in UML Activity Diagrams and State
Machines there are no specific elements provided for representing time
durations and time constraints further approaches for properly
supplementing them with the missing time aspects will be considered. The
techniques for expressing time requirements that will be investigated for
being used for automotive processes in PESOA are UML Timing Diagrams
[Pender03] and UML-RT and the UML Profile for Schedulability,
Performance and Time. UML Timing Diagrams will be covered in this report
while UML-RT and the UML Profile for Schedulability, Performance and
Time will be addressed later in the context of further investigations.

 64

UML Timing Diagrams provide means for assigning time information to the
states of an object and the corresponding events responsible for the state
change. In UML Timing Diagrams time constraints can be depicted as well
as duration constraints, i.e. the date can be displayed in which a state has to
be entered and left as well as the time the object will stay in a certain state.
Some of the main features of a Timing Diagram shall be illustrated based on
the exemplary Timing Diagram in Figure 26.

The diagram in Figure 26 depicts a part of a motor control unit process
showing the transition of the motor from the state “Afterstart” to the state
“Running”. In Timing Diagrams states are stacked on the left margin of the
frame that contains the process that shall be depicted. The state timeline of
the object shows the set of valid states and time. The flow of time goes from
left to right. Changes in the level of the line represent changes from one
state to another, which are induced by the receipt of messages. The name of
the message is assigned to the lifeline at the point where the timeline
changes its level due to the receipt of the message. In the example the
motor state changes from the state “Afterstart” to the state “Running” upon
the receipt of the message “Time for Afterstart expired”. Now this example
contains some time duration constraints for the state “Afterstart”. It shows
that the time the motor stays in the state “Afterstart” is limited to x
milliseconds.

Figure 26: Example for the application of Timing Diagrams

5.1.3 Summary

The analysis has shown that Activity Diagrams meet almost all of the
requirements arising from the employment with processes in the automotive
domain. Activity Diagrams only lack of elements for properly modeling
system states and time data. Taking a closer look at the requirements and
the Activity Diagram specification it even turns out that already an Activity
Diagram subset would provide the required modeling elements. With respect

 65

to the Activity Diagram compliance levels IntermediateActivities could be
taken as a fundament. In order to be able to model the persistent storage of
data, DataStoreNodes (and selection behaviors) would have to be added as
well as ExceptionHandlers and isException Pins for modeling exceptions
and exception handling. Additionally ParameterSets for modeling alternative
sets of input and output parameters could be added if necessary. This
approach would set aside LoopNodes and ExpansionRegions, which don’t
increase the expressiveness of an Activity Diagram but are only supposed to
enhance the structuring of a diagram.

State Machines on their part don’t offer the modeling elements needed for
depicting automotive processes properly by themselves, but have to be
combined with Activity Diagrams. Since there are many ways for integrating
Activity Diagrams with State Machines this can be done smoothly. In
contrast to Activity Diagrams State Machines offer a variety of means for
modeling states. Additionally some basic routing constructs provided by the
State Machine pseudo states would be needed in order to properly connect
the states.

Concerning the representation of time data, which is not supported explicitly
by Activity Diagrams nor by State Machines, theoretically UML Comments
could be used to add this information to the process diagrams. The
drawback of this approach is that UML comments can potentially contain any
information and therefore using them for displaying time data wouldn’t lead
to a very clear and descriptive representation of time requirements. Instead
Timing Diagrams can be used for depicting time constraints as well as
duration constraints for object states and the receipt of messages.
Additionally the usability of UML-RT and the UML Profile for Schedulability,
Performance and Time can be used for adding time data to the PESOA
process diagrams, which can be addressed later in the context of further
investigations if needed.

Regarding the requirement for a mathematically sound and unambiguous
formalization of the automotive process diagrams the needed Activity
Diagram elements could be formalized best using Colored Petri Nets
[Jensen92, ISO02]. Reasons for this are the similarity of the Activity Diagram
and Petri Net semantics, since both are token based. Moreover Petri Nets
are a good choice since they are very popular and therefore familiar to most
computer scientists. Due to the popularity of Petri Nets there are already
various tools and algorithms available for the quantitative as well as
qualitative analysis of processes represented as Colored Petri Nets. A Petri
Net representation of the required Activity Diagram elements would make
these tools and algorithms available to the PESOA project. An evaluation of
dozens of tools for simulating and analyzing Petri Nets can be found for
example under [Störrle98].

To sum up these considerations a combination of State Machines elements
with IntermediateActivities expanded by a small number of additional Activity

 66

Diagram elements would be suitable for graphically representing automotive
processes. Additionally UML Timing Diagrams, UML-RT and the UML Profile
for Schedulability, Performance and Time could be used for supplementing
the process diagrams by the missing time data. Concerning the formalization
of the elements involved in the modeling of the automotive processes, the
formalization of IntermediateActivities by means of Colored Petri Nets is
already in process. For the mapping of Activity Diagram Exceptions on Petri
Nets there exists already an investigation [Störrle04], which could be taken
as starting basis, while the formalization of Activity Diagram isException
Pins, DataStoreNodes, selectionBehaviors, and the required State Machine
elements still has to be investigated.

5.2 Modeling Processes in E-Business

This section summarizes the requirements for the E-Business domain from
chapter 3 and discusses the Business Process Modeling Notation (BPMN)
[BPMN] as a well suited approach to fulfill them. In addition to the graphical
representation, there is a need for a formalization to achieve the goals of the
PESOA project which is discussed thereafter.

5.2.1 Requirements for the E-Business Domain

As stated in chapter 3, the requirements for the E-Business domain can be
divided into three main areas. The most important area is a graphical
notation for workflow design which will be extended during the project to
support variant workflow models. The graphical notation must fulfill several
specific requirements which will be summarized in the next paragraphs. The
second area includes a formalization of the graphical notation which allows
reasoning and builds a formal foundation for the variability concepts. As the
requirements for the formalization depend on the concepts of variability,
which still have to be developed, they have to be investigated on demand.
The last area covers target languages for workflow execution. As those
requirements depend on the e-business partner, they must be investigated
later on.

The graphical notation that will be used for the visualization and editing of
variant workflow models is one of the key components of the PESOA project.
An existing notation that will be adapted for the E-Business domain should
be extendible to support variant workflows and already support the most
important workflow aspects. The relevant workflow aspects include the
definition of activities or tasks (functional aspect), the routing between the
tasks (behavioral aspect), roles (organizational aspect), and the required
case data (informational aspect). Another requirement is the support for
intra- and inter-organizational workflows. Intra-organizational workflows
typically contain behavior collected as Workflow patterns [van der Aalst00,
van der Aalst03], whereas inter-organizational workflows rely on

 67

communication. To support both types of workflow, the notation should
provide sequence as well as message flow capabilities.

To support and enable the goal of the PESOA project in the E-Business
domain, that is the automated process generation by the use of product line
techniques, some additional properties are required. These properties
include the unambiguousness of the notation regarding syntax and semantic
as well as advanced reasoning capabilities to ensure the variability
mechanisms.

5.2.2 Recommended Notation

This subsection proposes the Business Process Modeling Notation (BPMN)
as appropriate to fulfill the requirements of the E-Business domain
mentioned above. The advantages and drawbacks regarding the
requirements will be discussed and analyzed. An approach to overcome the
major drawbacks by the use of formalization is discussed thereafter.

Business Process Modeling Notation. The Business Process Modeling
Notation has been published by the Business Process Management Initiative
(BPMI) [BPMI] and was introduced in an earlier PESOA report
[Schnieders04]. The BPMN has been “proposed” as the future standard for
business process modeling by a number of companies related to the BPMI.
Among those advocators are global players like Bea, IDS-Scheer,
Peoplesoft, SAP, and IBM as a leading force along with many other
companies related to business process management. The BPMN is quite
similar to a subset of the UML Activity Diagrams which will be used for the
automotive domain. However, the BPMN does not complain to any of the
predefined compliance levels of the UML Activity Diagram specification.
Instead it focuses on the demands of business processes, which allows a
light-weighted notation that can possible be mapped to UML Activity
Diagrams if needed. Besides defining a meaningful set of modeling elements
for business processes, the notation is much more business than technical
related. This allows stakeholders from the business domain to specify and
analyze business processes more easily. Since the BPMI does not see itself
as a standardizing organization, there are ongoing efforts in integrating the
BPMN as another view in the UML [White04].

Technically, the BPMN consists of a few, but yet powerful modeling
elements that can be enhanced if needed. Those are grouped into four basic
categories: flow objects, connecting objects, swimlanes and artifacts. The
flow objects are the main graphical objects and consist of Events, Activities,
and Gateways. Those are used to model intra-organizational workflows
connected by Sequence Flows. Inter-organizational workflows are modeled
by the use of different Pools which are connected by Message Flows. A Pool
represents a business entity like a company that can be parted into different
Swimlanes that resemble organizational units. Elements can have data or

 68

annotations attached by using Association connectors. These are the core
modeling elements that can be enhanced in several ways as will be
explained later but always keep their general shape and look. This allows for
simple recognition and classification of new or enhanced elements.

The mapping of the workflow aspects to the BPMN is as follows. The
functional aspect is represented by Activities, which can be composed to
Sub-Processes to build hierarchies. The behavioral aspect is represented
through Sequence Flow inside a Pool and Message Flow between different
Pools. This resembles the concepts of intra- and inter-organizational
workflow. Activities or Events can be used to model communication between
different Pools. Specialized Events can start, hold or stop the Sequence
Flow depending on certain conditions like incoming messages, rules or
timers. Gateways are used to decide, split or join the Sequence Flow. The
organizational workflow aspect is represented by different Pools and Lanes
which resemble different roles. The informational aspect can be modeled by
the use of data annotations. Annotations might be a bit to abstract, but as
the requirements on data-formats depend on the target environment, it is up
to a modeling tool to enforce special types.

Figure 27 BPMN Example

MyOnlineShop.biz Postal ServiceBank

Sales Distribution

Process
Order

Payment

Credit
Card Invoice

Pack
Items

Send
Items

Receive
Order

Check
Items

Transport
Items

Deliver
Items

An example is shown in Figure 26. It consists of a simple online-shop that is
made up of three different Pools. The leftmost Pool, the Bank is represented
as a black-box Pool, which mean that the internal processes are unknown to
the outside world. The only thing knows is a communication interface which
allows for validating credit cards. The Pool in the middle is the online shop,
which consists of two different departments, modeled as Swimlanes. The

 69

internal process starts with receiving an order event, processes the order
and the payment, pack the items and finally send a message to a postal
service to actually ship the items. The postal service is shown in the
rightmost Pool. The inter-organizational workflow is modeled by the use of
Message Flows, which connect different internal processes of the
participants.

One aspect to measure the suitability of a notation for the workflow domain
is the support of the so called workflow patterns. Those pattern specify
common control structures for intra-organizational workflow [van der Aalst03]
which are mostly represented in the BPMN by routing constructs like
Sequence Flow, Gateways or Activity Markers. The BPMN has been
designed to support all of the currently documented workflow patterns
[White03]. The support of communication between different participants is
given by the Pool and Message Flow architecture.

As the extendibility of the BPMN was already mentioned, it will be
considered of how this can be done. The first approach is a graphical
extension which modifies the core modeling elements. For example, the core
Event is just a circle that is extended by a message symbol to derive a
Message Event that could start a process. A thick lined circle represents an
End Event that terminates the Sequence Flow. It can be enhanced with a
message symbol to represent the transmission of a message. Another
approach extends the attributes that provide properties for each of the
modeling elements. Typical attributes of a Pool are for example the process
it contains, the name of the participant that it represents as well as the lanes
that might be inside. Events have for example a trigger or a time or process
reference attribute. Those attribute sets could be extended to fit the
requirements of the PESOA project.

A disadvantage of the BPMN is the absence of a formal defined syntax and
semantics which is required for the automated code generation as well as a
foundation for the variability mechanisms. The variability mechanisms must
ensure the consistence and matching of interchangeable process parts
which are based on formal models. The disadvantage of an imprecise
semantic is shared with the UML Activity Diagrams and other graphical
notations.

Process Algebra. Modern process algebra is recommended for formalizing
the Business Process Modeling Notation. Process algebras are based on a
lot of theoretical foundations for reasoning and are very minimalist at the
other hand. Modern process algebras like the pi-calculus are based on
mobile processes which change their configuration [Milner92, Sangiorgi03].
This allows an easy representation of intra- as well as inter-organizational
workflows [Puhlmann04]. Process algebras have been successfully used to
formalize programming notations and protocols for a long time, starting with
CSP [Hoare78] and CCS [Milner89]. Examples can be found for instance in

 70

[Mauw96, Bernardo02, Brogi04]. As the BPMN defines a mapping to
executable languages which themselves are based on process algebra, like
the BPML [BPML] is based on the pi-calculus, formalization should be
possible.

Process algebras are a different view of formalization as for example Petri
nets. The most important issue to choose process algebra is the existing
relation between BPMN and process algebra by executable XML languages
like BPML. A beneficial aspect is the quite small but yet precise formalization
that a process algebra allows for. Another benefit is the extendibility of the
semantic through additional transition rules.

Process algebra can directly formalize the concepts of a language or
notation; whereas formalization based on Petri nets map a graphical notation
to a formal representation. The later approach is required for reasoning
about quantitative as well as qualitative aspects of processes [van der
Aalst02c] as in the automotive domain. A formalism based on process
algebra defines some kind of formal language that can be easily extended to
meet further requirements like pre- and post conditions of process parts in
one unified framework. It is possible to consolidate the advantages of Petri
nets and process algebra as investigated by for example by [Basten98].

5.2.3 Summary

The analysis of the BPMN, which was shortly summarized in this section,
has shown that the notation is well suited to fulfill most of the requirements
of the e-business domain. These include the support for intra- as well as
inter organizational workflow, the relevant workflow aspects, workflow
patterns and communication. By further analyzing the requirements it shows
out that the UML Activity Diagrams also fulfill most of them. But as stated in
the previous section, the full Activity Diagram specification is way to complex
for the automotive requirements, this holds even more for the e-business
domain. The BPMN can be seen as a selected subset of the Activity
Diagram specification that is specially suited to model business processes.
The advantage of having two domain specific languages that share one
meta-model will be discussed in the next section.

Unfortunately, the BPMN lacks a precise and formal definition of its syntax
and semantics. These are required for the automated code-generation and
as a foundation for the variability mechanisms and concepts that will be
developed during the PESOA project. An interesting point is the
formalization of the meta-model that will contain support for the variability
concepts. One approach to create a view of this formalism in the e-business
domain is by the use of process algebra. The pi-calculus has been evaluated
for this purpose and it showed out that it supports all requirements of the e-
business domain, including the capabilities for further enhancements. The
analysis will be published in a technical report [Puhlmann04]. However it still

 71

has to be evaluated where and when formalization supports variability
mechanisms and concepts.

As the BPMN additionally contains a complete mapping to executable XML
languages, like the Business Process Execution Language for Web Service
(BPEL4WS) [BEA], this languages could be used as targets for the
generator. The integration into software product lines is given by the
similarity to the UML meta-model which allows for incorporating existing
solution like KobrA [Atkinson02]]. The elements of the BPMN could also be
extended graphically to allow the future representation of variant workflow
models as well as on attribute level, which will support code generators and
configuration tools.

5.3 Conclusions

This section will summarize the results of the analysis of process modeling
techniques for automotive and e-business processes on the basis of the
specific requirements given by the respective domain. Moreover similarities
of the modeling techniques suitable for representing e-business and
automotive processes that may lead to the identification of a common
metamodel for a PESOA process modeling language will be discussed.

Concerning the modeling of automotive processes a combination of State
Machines elements with IntermediateActivities expanded by a small number
of additional Activity Diagram elements would support all of the requirements
given by the automotive domain. However, any of these two modeling
approaches taken separately doesn’t provide all of the modeling concepts
needed for the graphical representation of automotive processes. UML
Timing Diagrams, UML-RT and the UML Profile for Schedulability,
Performance and Time could be used for supplementing the process
diagrams by the missing time data, while the latter two approaches still have
to be investigated concerning their applicability for PESOA processes.

The e-business domain includes in the first row the support for intra- and
inter-organizational workflow. It is characterized by the workflow aspects
denoted as the functional, behavioural, organizational, and informational
perspective. The different workflow aspects can be represented using
certain concepts like activities, data input or output. Commonly used
patterns in the e-business domain employable for describing the behavioral
aspect have been collected as Workflow Patterns. The Business Process
Modeling Notation supports all of the abovementioned aspects. One aspect
that is missing is variability as a key aspect of the PESOA project. The
BPMN can be extended in several ways to support this aspect. Furthermore,
the BPMN has an already defined mapping to executable XML languages
which could be used for the code generation.

 72

As a profound disadvantage, the graphical notations that have been chosen
for the visualization of the processes, lack a formal foundation. Formalism is
required to define an unambiguous sub-set of the chosen notations that
allows for automated code generation. Furthermore, the formalization acts
as a foundation for the concepts and methodologies for variability aspects.
Petri nets and process algebra form two different views of the formalization
of the PESOA meta model. As this model is still under construction, it has to
be investigated which approach could be used best for certain purposes.
Ongoing work investigates the possible mapping of UML Activity Diagrams
to Petri nets for qualitative and quantitative reasoning as well as simulation
by existing tools. The adequacy of modern process algebra for the purpose
of fulfilling the requirements of the e-business domain of the PESOA project
has been shown [Puhlmann04]. The next steps include the definition of a
formal specification of the graphical notations which will underpin the
ongoing research.

Figure 28 Mapping of the PESOA requirements to process modeling languages

An outlook of the future work of specifying a PESOA meta model is shown in
Figure 28. The approach of having several domain specific notations that
share one meta model has several advantages. The first advantage is the
better usability by different stakeholders that could utilize the notations
known to their domain. Technically the approach concentrates on necessary
aspects that are required for each domain instead of specifying an
overloaded notation. Thereby all notations share a common meta model.
This allows the possible addition of other notations as well as the
transferability of variability concepts among the notations. The figure shows

 73

that the PESOA requirements are made up of a union of the set of
requirements from the e-business as well as the automotive domain. Those
requirements overlap heavily. For example events and exception from the
automotive domain can be assigned to the behavioural aspect of workflow,
whereas input and output can be mapped to the functional and informational
workflow aspect. The PESOA requirements are fulfilled partly by the
investigated notations. The BPMN is well suited for many of the e-business
requirements and overlaps with the UML Activity Diagrams which are used
to fulfil many requirements of the automotive domain. A special requirement
of the last domain is the representation of states which are representable by
UML State Machines. However, those State Machines contain many
concepts that are not required for the PESOA domain. The uncovered parts
of the PESOA requirements are fulfilled by formalization or other notations
that have to be investigated as needed. All mentioned notations are derived
from the UML meta model or are close to them. The PESOA meta model
could possibly be oriented on the UML meta-model with extensions for
supporting variability.

Regarding the integration of Activity Diagrams, State Machines, and BPMN
into existing domain engineering techniques, a smooth integration of Activity
Diagrams and State Machines into KobrA should be possible, since older
versions of Activity Diagrams and State Machines are already supported by
KobrA. And due to the similarity of the BPMN and Activity Diagram
metamodel an integration of BPMN into KobrA should be feasible as well.

 74

6 Outlook

This report analyzed domain engineering techniques to support the modeling
of variant-rich processes, investigated the special requirements of two
different application domains, and discussed existing languages for
modeling processes.

The results that have been achieved will be brought together to enable the
modeling of generic, variant-rich processes in the e-Business and the
automotive domain. To this end, we will first investigate the commonalities
and differences between e-Business processes and technical processes as
used in the automotive domain. The goal is to reuse techniques and also
experience between the two domains. In a next step, a common model will
be developed that captures the concepts needed to model processes in the
two domains. This conceptual will be augmented with means to model
variability and decision hierarchies in order to enable the modeling of generic
processes. The final step is then to develop domain-specific customizations
of the conceptual model for the two considered domains.

 75

7 References

[Alonso97] Gustavo Alonso, Divyakant Agrawal, Amr El Abbadi, and C. Mohan.
Functionality and Limitations of Current Workflow Management
Systems. IEEE Expert, 12(5), 1997.

[Arpinar99] Ismailcem Budak Arpinar, Ugur Halici, Sena Nural Arpinar, and
Asuman Dogac. Formalization of Workflows and Correctness Issues
in the Presence of Concurrency. Distributed and Parallel Databases,
7(2):199-248, 1999.

[Atkinson01] C. Atkinson, J. Bayer, C. Bunse, E.Kamsties, O. Laitenberger, R.
Laqua, D. Muthig, B. Paech, J. Wüst, and J. Zettel. Component-based
Product Line Engineering with UML. Component Software Series.
Addison-Wesley, 2001.

[Atkinson02] C. Atkinson et.al. Component-based Product Line Engineering with
UML. Addison-Wesley, New York, 2002.

[Basten98] T. Basten. In Terms of Nets: System Design with Petri Nets and
Process Algebra. PhD thesis, Eindhoven University of Technol-ogy,
Eindhoven, The Netherlands, 1998

[Bauer01] Thomas Bauer, Manfred Reichert, and Peter Dadam. Effiziente
Übertragung von Prozessinstanzdaten in verteilten Workflow-
Management-Systemen. Informatik-Forschung und Entwicklung,
16(2):76-92, 2001.

[Bayer99a] J. Bayer, D. Muthig, and T. Widen. Customizable Domain Analysis. In
Proceedings of the First International Symposium on Generative and
Component-Based Software Engineering (GCSE '99), Erfurt,
Germany, September 1999

[Bayer99b] J. Bayer, O. Flege, P. Knauber, R. Laqua, D. Muthig, K. Schmid, T.
Widen, J.-M. DeBaud. PuLSE: A Methodology to Develop Software
Product Lines. In Proc. of the Symposium on Software ReUsability
(SSR’99), pp. 122-131, 1999.

[BEA] BEA Systems, IBM, Microsoft, SAP, Siebel Systems. Business
Process Execution Language for Web Services Version 1.1, May
2003.

[Becker03] Jörg Becker. Process Management. Springer, Berlin, 2003.

 76

[Bernardo02] M. Bernardo, P. Ciancarini, and L. Donatiello. Architecting Families of

Software Systems with Process Algebra. ACM Transac-tions on
Software Engineering and Methodology, 11(4):386-426, 2002.

[Brogi04] A. Brogi, C. Canal, E.Pimentel, and A. Vallecillo. Formalizing Web
Service Choreographies. In Proceedings of First Interna-tional
Workshop on Web Services and Formal Methods. El-sevier, 2004 (to
appear).

[Bunse01] C. Bunse. Pattern-Based Refinement and Translation of Object-
Oriented Model to Code, Fraunhofer IRB Verlag, 2001.

[Born04] M. Born, E. Holz, and O. Kath. Softwareentwicklung mit UML 2.
Addison-Wesley, München, 2004

[Bock03a] C. Bock. UML 2 Activity and Action Models. in Journal of Object
Technology, vol. 2, no. 4, July-August 2003, pp. 43-53.

[Bock03b] C. Bock. UML 2 Activity and Action Models Part 2: Actions. in Journal
of Object Technology, vol. 2, no. 5, pp. 41-56.

[Bock03c]

C. Bock. UML 2 Activity and Action Models Part 3: Control Nodes. in
Journal of Object Technology, vol. 2, no. 6, pp. 7-23.

[Bock04a] C. Bock. UML 2 Activity and Action Models Part 4: Object Nodes. in
Journal of Object Technology, vol. 3, no. 1, pp. 27-41.

[Bock04b] C. Bock. UML 2 Activity and Action Models Part 5: Partitions. in
Journal of Object Technology, vol. 3, no. 7, pp. 37-56.

[BPEL] BEA Systems, IBM, Microsoft, SAP, Siebel Systems. Business
Process Execution Language for Web Services Version 1.1, May
2003.

[BPMI] Business Process Management Initiative. URL: http://www.bpmi.org
(October, 7 2004).

[BPML] BPMI.org. Business Process Modeling Language, 2002.

[BPMN] BPMI.org. Business Process Modeling Notation, 1.0 edition, May
2004.

[Clements01] P. C. Clements and Linda Northrop. Software Product Lines: Prac-
tices and Patterns. SEI Series in Software Engineering. Addison-
Wesley, August 2001

[Chastek02] G. J. Chastek (ed). Software Product Lines. Proceedings of the
Second International Conference (SPLC2), San Diego, California,
USA, August 2002.

 77

[Davulcu98] Hasan Davulcu, Michael Kifer, C. R. Ramakrishnan, and I. V.

Ramakrishnan.
Logic Based Modeling and Analysis of Workflows. In Proceedings of
the seventeenth ACM SIGACT-SIGMOD-SIGART symposium on
Principles of database systems, pages 25-33. ACM Press, 1998.

[DC03] DaimlerChrysler Annual Report 2003. http://www.daimlerchrysler.com.

[Donohoe00] P. Donohoe (ed.). Software Product Lines - Experience and Research
Directions. Proceedings of the First International Software Product
Lines Conference (SPLC1), Denver, Colorado, USA, August 2000.

[EL03] Europa Lehrmittel, Tabellenbuch Kraftfahrzeugtechnik, Europa
Fachbuchreihe, 2003.

[Haugen02] Bob Haugen and Tony Fletcher. Multi-party Electronic Business
Transactions.
http://www.choreology.com/standards/commentary/mult
iparty.htm (September 10, 2004), 2002.

[Hollingsworth95] David Hollingsworth. TheWorkflow Reference Model. Technical
report, Workflow Management Coalition, Hampshire, 1995.

[Hoare78] C.A.R. Hoare. Communicating Sequential Processes. Commu-
nications of the ACM, 21(8):666-677, 1978.

[ISO02] ISO/IEC. High level petri nets – concepts, definitions and graphical
notation. ISO/IEC 15909, 5 2002.

[Jensen92] Kurt Jensen. Coloured Petri Nets: Basic Concepts, Analysis Methods
and Practical Use. Volume 1. Springer, 1992.

[Kang90] Kyo Kang, Sholom Cohen, James A. Hess, William E. Novak, A.
Spencer Peterson; “Feature-Oriented Domain Analysis (FODA)
Feasibility Study”; Technical Report CMU/SEI-90-TR-21; 1990

[Labrosse02] Jean J. Labrosse. MicroC/OS-II. C6MPBooks, 2002.
[Leen02] Gabriel Leen and Donal Heffernan. Expanding Automotive Electronic

Systems. In IEEE Computer, January 2002, pages 88-93.

[Leymann00] Frank Leymann and Dieter Roller. Production Workflow: Concepts
and Techniques. Prentice Hall PTR, New Jersey, 2000.

[Lück04]

Wolfgang Lück. Lexikon der Betriebswirtschaft. Oldenbourg
Wissenschaftsverlag, München, 2004.

[Mauw96] S. Mauw. The formalization of Message Sequence Charts. Computer

 78

Networks and ISDN Systems, 28(12):1643-1657, 1996.

[Mertens01] Peter Mertens. Lexikon der Wirtschaftsinformatik. Springer, Berlin,
2001.

[Milner89] R. Milner. Communication and Concurrency. Prentice Hall, New York,
1989.

[Milner92] R. Milner, J. Parrow, and D. Walker. A calculus of mobile proc-esses,
Part I/II. Information and Computation, 100:1-77, 1992.

[Nord04] R. L. Nord (ed.). Software Product Lines. Proceedings of the Third
International Conference (SPLC3), Boston, MA, USA, August 2002.

[OCL] Object Management Group. UML 2.0 OCL Specification. Object
Management Group, 2003.

[OSEK] OSEK Open systems and the corresponding interfaces for automotive
electronics. http://www.osek-vdx.org.

[OWL] Mike Dean and Guus Schreiber. OWL Web Ontology Language.
W3C, 2004.

[Papazoglou02] Michael P. Papazoglou. The World of e-Business: Web-Services,
Workflows, and Business Transactions. In Ch. Bussler, editor, Web
Services, E-Business, and the Semantic Web (WES) 2002, volume
2512 of LNCS, pages 153{173, Berlin, 2002. Springer-Verlag.

[Pender03] T. Pender. UML Bible. John Wiley & Sons, 2003.

[PESOA] PESOA. PESOA Projektbeschreibung, 2003.
[PSL] Process Specification Language Homepage.

http://www.mel.nist.gov/psl/ (September, 10).
[Puhlmann04] F. Puhlmann. On the Application of the pi-calculus to Workflow.

Technical Report, Hasso-Plattner-Institute, 2004 (to appear).

[Sangiorgi03] D. Sangiorgi, and D. Walker. The pi-calculus: A theory of mobile
processes. Cambridge University Press, Cambridge, 2003.

[Schäuffele03] Jörg Schäuffele und Thomas Zurawka. Automotive Software
Engineering. Vieweg, July 2003.

[Scheer01] August-Wilhelm Scheer. ARIS – Modellierungsmethoden, Meta-
Modelle, Andwendungen. Springer-Verlag, Berlin, 2001.

[Schildhauer03] Thomas Schildhauer. Lexikon Electronic Business. Oldenbourg
Wissenschaftsverlag, München, 2003.

 79

[Smith02] Howard Smith and Peter Fingar. Business Process Management -
The Third Wave. Meghan-Kiffer Press, Tampa, 2002.

[Schnieders04] A. Schnieders, F. Puhlmann and M. Weske. Process Modeling
Techniques. PESOA Report No. 01/2004, Hasso-Plattner-Institute,
2004.�

[Schlenoff99] C. Schlenoff, M. Gruninger, M. Ciocoiu, and J. Lee. The Essence of
the Process Specification Language. In Special Issue on Modeling
and Simulation of Manufacturing Systems in the Transactions of the
Society for Computer Simulation International, 1999.

[Störrle98] H. Störrle. An Evaluation of High-End Tools for Petri-Nets. Tech-nical
Report, Institut für Informatik/PST, Ludwig-Maximilians-Universität
München, 1998.

[UML] Object Management Group. UML 2.0 Superstructure Final Adopted
Specification. Object Management Group, 2003.

[van der Aalst97] W. M. P. van der Aalst. Verification of Workflow Nets. In P. Azéma
and G. Balbo, editors, Application and Theory of Petri Nets 1997,
volume 1248 of LNCS, pages 407-426, Berlin, 1997. Springer-Verlag.

[van der Aalst00] W. M. P. van der Aalst, A. H. M. ter Hofstede, B. Kiepuszewski, and
A.P. Barros. Workflow patterns. Technical Report BETA Working
Paper Series, WP 47, Eindhoven University of Technology, 2000.

[van der Aalst02a] W. M. P. van der Aalst, M. Dumas, and A.H.M. ter Hofstede. Pattern
Based Analysis of BPEL4WS. Technical Report FIT-TR-2002-04,
Queensland University of Technology, Brisbane, 2002.

[van der Aalst02b] Wil van der Aalst and Kees van Hee. Workflow Management. MIT
Press, 2002.

[van der Aalst02c] W.M.P. van der Aalst, and K.M. van Hee. Workflow Manage-ment:
Models, Methods, and Systems. Cambridge, MIT Press, 2002.

[van der Aalst03] W. M. P. van der Aalst, A. H. M. ter Hofstede, B. Kiepuszewski, and
A.P. Barros. Workflow patterns. Distributed and Parallel Databases,
14(1):5-51, 2003.

[W3C] W3C Glossary and Dictionary.
http://www.w3.org/2003/glossary/
 (September 10, 2004).

[Weske98] Mathias Weske and Gottfried Vossen. Workflow Languages.
Handbook on Architectures of Information Systems. Springer-Verlag,
Berlin, 1998

 80

[Weske00] MathiasWeske. Workflow Management Systems: Formal Foundation,

Conceptual Design, Implementation Aspects. Habilitationsschrift,
Fachbereich Mathematik und Informatik, Universität Münster,
Münster, 2000.

[White03] S. White. Process Modeling Notations and Workflow Patterns.
Technical Report, IBM Corp., 2003.

[White04] ADTmag.com. Q&A: Stephen White, IBM: BPMN spec aims to
help join business and IT. URL:
http://www.adtmag.com/article.asp?id=9412 (October, 5 2004).

[WP] Workflow Patterns Homepage.
http://tmitwww.tm.tue.nl/research/patterns/
(September 10, 2004).

[WSDL] Erik Christensen, Francisco Curbera, Greg Meredith, and
Weerawarana Sanjiva. Web Service Description Language (WSDL)
1.1. IBM, Microsoft, March 2001. W3C Note.

