
PESOA
Process Family Engineering in Service-Oriented Applications

BMBF-Project

Variability Mechanisms for Process Models

Authors:
Frank Puhlmann
 Hasso-Plattner-Institut
Arnd Schnieders

Hasso-Plattner-Institut
Jens Weiland

DaimlerChrysler
 Research and Technology
Mathias Weske

Hasso-Plattner-Institut

PESOA-Report No. TR 17/2005
June 30, 2005

I

II

Abstract

This report describes the representation of variant rich process models and
the derivation of concrete process models using variability mechanisms.
Therefore based on a study of existing variability mechanisms, architectur-
ally relevant variability mechanisms are identified and their transfer first onto
generic processes and then onto UML Activity Diagrams, UML State Ma-
chines, BPMN, and Matlab/Simulink is described. A number of practical ex-
amples demonstrates the application of the approach.

III

PESOA is a cooperative project supported by
the federal ministry of education and research
(BMBF). Its aim is the design and prototypical
implementation of a process family engineer-
ing platform and its application in the areas of
e-business and telematics.
The project partners are:

· DaimlerChrysler AG
· Delta Software Technology GmbH
· ehotel AG
· Fraunhofer IESE
· Hasso-Plattner-Institute
· University of Leipzig

PESOA is coordinated by
Prof. Dr. Mathias Weske
Prof.-Dr.-Helmert-Str. 2-3
D-14482 Potsdam

www.pesoa.org

Table of Contents

1 Introduction 1

2 Survey and Categorization of Existing Variability
Mechanisms 3

2.1 Information Hiding 4
2.2 Inheritance 4
2.3 Parameterization 4
2.4 Templates 5
2.5 Null-Classes 5
2.6 Interface Separation 5
2.7 Design Patterns 5
2.8 Replacement of Components 5
2.9 Omission of Components 6
2.10 Extensions and Extension Points 6
2.11 Addition of Components 6
2.12 Delegation/Aggregation 6
2.13 Further Variability Mechanisms 6

3 Variability Mechanisms for Generic Processes 8
3.1 Fundamental Process Concepts 8
3.2 Basic Variability Mechanisms 8
3.2.1 Encapsulation of Varying Subprocesses 8
3.2.2 Addition, Replacement, Omission of Encapsulated

Subprocesses 9
3.2.3 Parameterization 9
3.2.4 Variability in Data Types 9
3.3 Composite Variability Mechanisms 10
3.3.1 Inheritance 10
3.3.2 Design Patterns 10
3.3.3 Extensions/Extension Points 10

4 Variability Mechanisms for UML Activity Diagrams 11
4.1 Basic Variability Mechanisms 11
4.1.1 Encapsulation of Varying Subprocesses 11
4.1.2 Adding Actions 11
4.1.3 Replacing Actions 12
4.1.4 Omitting Actions 15
4.1.5 Parameterization 15
4.1.6 Variability in Data Types 17
4.2 Composite Variability Mechanisms 17
4.2.1 Inheritance 17

vii

4.2.2 Design Patterns 18
4.2.3 Extensions/Extension Points 18
4.3 Notation for Variability Mechanisms in Activity Diagrams 21
4.4 Example 23
4.4.1 Equipment Components 23
4.4.2 Immobilizer 26

5 Variability Mechanisms for UML State Machines 28
5.1 Basic Variability Mechanisms 28
5.1.1 Encapsulation of Varying Subprocesses 28
5.1.2 Addition, Replacement, Omission of Encapsulated

Subprocesses 29
5.1.3 Parameterization 29
5.1.4 Variability in Data Types 30
5.2 Composite Variability Mechanisms 30
5.2.1 Inheritance 30
5.2.2 Design Patterns 31
5.2.3 Extensions/Extension Points 31
5.3 Notation for Variability Mechanisms in State Machines 31
5.4 Example 32

6 Variability Mechanisms for BPMN 35
6.1 Preliminaries 35
6.2 Basic Variability Mechanisms 36
6.3 Composite Variability Mechanisms 38
6.4 Example 40

7 Modeling Variability in Matlab/Simulink 44
7.1 Concepts for Modeling Variants 45
7.1.1 Configurable Subsystem Blocks 45
7.1.2 Application of (Block) Parameters 46
7.2 Concepts for Identifying Variability 47

8 Conclusions and Outlook 49

viii

1 Introduction

One of the main objectives of the PESOA project consists in investigating an
approach for the development of families of process oriented software. One
key concept of product family oriented software development is that reuse
shall take place on any stage of the software development process, i.e. not
only code shall be reused to a maximum, but potentially also any other soft-
ware development artifact, like architecture or design models. For the opti-
mal reuse of software development artifacts so called variability mechanisms
play a crucial role. Variability mechanisms allow for the derivation of artifact
variants from generic artifacts. While the derived artifact variant is typically
specific for a concrete member of the product line, the generic artifact has
features, which are common for more than one member of the product line.

Up to now existing variability mechanisms mostly target at the static aspects
of a software system’s model, while approaches for process oriented soft-
ware as being dealt with in process family engineering have been neglected.
Therefore, the intention of this report is to analyze thoroughly how variability
mechanisms for process models can be acquired.

For this we will access the considerable number of variability mechanisms,
which have already been published. These variability mechanisms can be
classified according to the point in the product line lifecycle at which they
perform the resolution of the variability, which is also referred to as the bind-
ing time. In our case only those variability mechanisms are relevant which
resolve variability at the architecture or design model level or which at least
have a visible impact on the architecture or design of a system. For the sake
of simplicity we will call these variability mechanisms architecturally relevant
variability mechanisms. Our approach for obtaining variability mechanisms
for process models is to investigate the transferability of architecturally rele-
vant variability mechanisms to process models. We take this approach as
we assume that only architecturally relevant variability mechanisms can be
transferred to process models since also process models of process ori-
ented systems only contain architecture or design related information.

Our proceeding therefore is first to identify architecturally relevant variability
mechanisms and secondly describe their usability in process oriented archi-
tecture models. We thereby neither claim that the described variability
mechanisms for process oriented architecture models form a complete or
minimal set.

This report is structured as follows: Section 2 gives an overview of existing
variability mechanisms and divides them into architecturally and non-
architecturally relevant variability mechanisms. Section 1 describes funda-

1

mental process concepts based on which the architecturally relevant vari-
ability mechanisms from section 2 will be described for generic processes.
Section 4, 5, 6, 7 describe how these variability mechanisms can be repre-
sented in UML Activity Diagrams, UML State Machines, BPMN, and Mat-
lab/Simulink. Section 8 summarizes the main contents of this report and
gives an outlook to future research.

2

2 Survey and Categorization of Existing Variability Mechanisms

As already mentioned one of the main goals of product line oriented soft-
ware development is to maximize the reuse of software development arti-
facts (like design models, code, etc.) for the members of the product line.
For this purpose the product line utilizes generic artifacts. We refer to these
artifacts as generic since they have properties, which are common to more
than one member of the software product line. But usually the generic arti-
facts cannot be used as is for a concrete product line member. The reason
for this is that typically the requirements of the members of the product line,
which require the generic artifact, differ slightly. Therefore, a generic artifact
normally has to be adapted to the specific requirements of a concrete prod-
uct in order to be usable by that product. For being adaptable to the re-
quirements of a concrete member of the product line, a generic artifact dis-
poses of variation points, which specify the parts in which the requirements
of the concrete products vary. This allows the generic artifact for being
adapted to the requirements of a concrete product by binding variants, which
suit the needs of the concrete product, to every variation point of the generic
artifact.

For the adaptation of the generic artifacts so-called variability mechanisms
are required. According to [JGJ97] variability mechanisms are techniques for
specializing abstract components. [SvB03] more generally denotes variability
mechanisms as “techniques available for introducing variability into the soft-
ware product line”. Since we focus on processes in this report we don’t con-
sider the first definition appropriate, while the second one can be concretized
more. Therefore we suggest the following definition of variability mecha-
nisms:

Variability mechanisms denote techniques for the derivation of process
model variants from existing process models.

The careful selection of an appropriate variability mechanism for specializing
an artifact is important since the selection of an unsuitable variability mecha-
nism may lead to the problem that a generic artifact cannot be adapted when
required. Because of their importance for the product line oriented software
development, variability mechanisms have been investigated extensively,
leading to the identification of a great number of variability mechanisms
[AnG00, Bos00, CIN02, JGJ97, SvB03]. However, for our purpose to define
variability mechanisms for process architecture models only “architecturally
relevant” variability mechanisms are of interest. A variability mechanism is
considered to be architecturally relevant, if it has a visible impact on the ar-
chitecture of a system. In addition to variability mechanisms on the architec-
ture level, we differentiate between variability mechanisms on the product

3

and on the runtime level. Product time comprises those types of variability
which are resolved during the implementation of a single product, while the
runtime level refers to resolution of variability at runtime. In 2.13 variability
mechanisms for the product and runtime level are described. In 3 we then
describe the usability of the architecturally relevant variability mechanisms in
process oriented architecture models.

In the remainder of this section we will give a brief overview of some of the
most important architecturally relevant variability mechanisms.

2.1 Information Hiding

Information hiding as described by [Gom04, Gom05] means that different
versions of a component facilitating different members of a product line can
be encapsulated by means of a common interface. Information hiding is also
referred to by [GBS01] as the utilization of black box components.

2.2 Inheritance

Inheritance together with the related concept Polymorphism represents an
important variability mechanism that serves as the basis for several other
variability mechanisms like Extensions and Design Patterns besides being
usable in isolation. Due to its relevance for product family engineering inheri-
tance is addressed in most publications dealing with variability mechanisms
like in [Bos00, Gom05, JGJ97, SvB03]. Inheritance is used as a variability
mechanism on the model level as well as on the code level.

2.3 Parameterization

According to [BaB01, Gom05, JGJ97, SvB03] using parameterization com-
ponent variants are generated by configuring the generic components with a
set of parameter values. The prerequisite for this is that all possible variants
are provided in the component’s code. Parameterization is used typically if
there are many small variation points, which causes minor changes to the
system for a variant feature [JGJ97]. Following the definition of [ClN02] fea-
tures are user-visible aspects or characteristics of a system and are typically
organized in tree-structures during the domain analysis.

4

2.4 Templates

Templates [Bos00, JGJ97, SvB03] are a technique that allows for postpon-
ing the decision on which type a process shall work, until the time the proc-
ess is performed instead of the time of its implementation.

2.5 Null-Classes

The optional parts of a component’s behavior can be sourced out into a
separate class. Now, if the optional behavior shall be omitted a null class
can be generated that acts as a placeholder for the class containing the op-
tional behavior [SGB03].

2.6 Interface Separation

As already mentioned, variability in product line architectures can be realized
by replacing components. Thereby, the replacing component variant can
have a different interface than the replaced component. In order to be able
to restrict the variability to the product architecture derivation without having
to make adaptations at the code level later, both the provided interface of the
varying component as well as the required interface of the component im-
porting the varying component can be sourced out into separate classes.
The configuration management tool can then decide which interface classes
to use together with which component variants. This interface separation
technique is described in [SGB03].

2.7 Design Patterns

Certain Design Patterns are frequently referred to as a variability mechanism
[Bos00, Gom05, SvB03]. “Gang of Four” Design Patterns [GHJ95] used as
variability mechanisms are the “Adapter”, “Strategy”, “Template Method”,
“Factory”, “Abstract Factory”, and “Builder” pattern. Moreover, the “Broker
Pattern” [BJM96] can be used as a variability mechanism, as well as the
“Single Adapter”, “Multiple Adapter”, and “Option” Pattern [KeM99]. How-
ever, according to [Sch97], except for a small number of Design Patterns
any Design Pattern provides a way to implement variability.

2.8 Replacement of Components

In static models entire components can be replaced by other components,
which is described by [ClN02]. In general, if a component is replaced by an-
other component it has to be considered that related components may not
be compatible to the interface of the replacing component any more.

5

2.9 Omission of Components

Variations within a static model can be realized by omitting components en-
tirely, as described by [ClN02]. The question arises what happens to the re-
lations of the components connected to the component to be omitted, i.e.
with the required and provided interfaces of the related components? They
also have to regard the absence of the component they referred to originally.

2.10 Extensions and Extension Points

Extensions and Extension Points [Bos00, ClN02, JGJ97, SvB03] are used if
a component can be extended at a certain predefined point by additional be-
havior selected from a set of possible variants.

2.11 Addition of Components

Components can also be added to static structures at arbitrary points in the
diagram. One question is how the new component is connected to the re-
maining diagram. The difference between extensions/extension points and
the addition of components is that for extensions in contrast to the addition
of components a placeholder (the extension point) is provided for the com-
ponent to be added, while this isn’t the case if components are added. The
addition of components is outlined as a variability mechanism by [ClN02].

2.12 Delegation/Aggregation

As described in [ClN02] the functionality of an object can also be extended
by delegating the calculations the object cannot perform on its own to an-
other object encapsulating the (varying) functionality for performing the re-
spective calculations. Alternatively, the invoked object can also be aggre-
gated by the invoking object.

2.13 Further Variability Mechanisms

In addition to variability mechanisms, which focus on the product architec-
ture derivation phase, there is a great number of variability mechanisms be-
ing clearly targeted at other points in time during the lifecycle of the product
line and therefore will not be considered here. Variability mechanisms at
product time [ClN02] are automatic generation [ClN02, JGJ97, SvB03], con-
ditional compilation [BaB01, ClN02, SvB03], frames [ClN02], static libraries
[ClN02], scripting [GBS01], configuration [JGJ97, SGB03, SvB03], if-
statements [SGB03], and binary replacement [GBS01]. Variability mecha-
nisms applied at runtime are, for example, the dynamic binding of compo-
nents at runtime [ClN02, GBS01, SGB03] and reflection [ClN02]. Additionally

6

there are variability mechanisms which don’t fit in any of these binding time
categories, like for example Use Case inheritance [JGJ97].

7

3 Variability Mechanisms for Generic Processes

This section starts with an introduction of the fundamental process concepts
based on which we can describe variability mechanisms for process models
generically. Our intention thereby is rather to introduce the terminology we
will use, than to define a process meta model.

Next, we describe the transfer of variability mechanisms identified to be rele-
vant on an architecture model level on generic process models as described
previously. Thereby, we group the variability mechanisms in basic and com-
posite variability mechanisms. Basic variability mechanisms do not rely on
other variability mechanisms, while composite variability mechanisms require
the application of basic variability mechanisms.

3.1 Fundamental Process Concepts

A process can consist of subprocesses, which can be encapsulated hiding
the details of the encapsulated subprocess behind a subprocess interface.
Thereby, subprocesses can be combined as single execution steps. More-
over, subprocesses can be invoked synchronously and asynchronously from
within the process either receiving return values or not. Subprocess steps
can have incoming and outgoing control and data flow edges and contain
process execution steps, which are interconnected by control and data flow
edges. Control and data flow edges describe the control and data flow within
the process. The data flow is characterized by the data types exchanged be-
tween the processing steps in the process. The behavior of an execution
step can be parameterized as well as the control and data flow edges of a
process. Parameterization of the control flow leads to changes in the routing
within the process while parameterization of the data flow leads to variation
in the processed data types. The control flow can also depend on the data
types forwarded in the data flow. The behavior of subprocesses can also
depend on their input data types. Also data storages can be represented in a
process model. Data storages can only contain data of a certain type.

3.2 Basic Variability Mechanisms

3.2.1 Encapsulation of Varying Subprocesses

Assuming that subprocesses in process models are the analog concept to
components in component models, subprocess interfaces can be defined,
which hide details concerning the internal structure of the subprocess. This

8

allows for the insertion of different subprocess variants hidden by the invari-
ant interface.

3.2.2 Addition, Replacement, Omission of Encapsulated Subprocesses

In process models encapsulated subprocesses can be added, replaced or
omitted at potentially any place in the process model. Thereby, it has to be
paid attention that the addition, replacement or omission of an encapsulated
subprocess doesn’t lead to a structurally incorrect process description. If a
subprocess is added the respective data flow and control flow edges are in-
terrupted by the newly added subprocess. If a subprocess is replaced by
another subprocess especially the compatibility of the interface of the replac-
ing subprocess with the preceding and succeeding elements of the replaced
subprocess has to be regarded. If an encapsulated subprocess is omitted
this means that the respective execution step is ignored upon execution of
the process. The control flow is therefore continued at the successors of the
omitted execution step. Concerning the data flow the potential absence of
data transformations originally performed by the omitted execution step has
to be tolerable by subsequent process model elements. In subsequent exe-
cution steps the behavior depending on the transformed data has to be omit-
ted as well.

3.2.3 Parameterization

Through parameterization behavioral variants which are integrated in the
process can be activated by configuring the process with corresponding pa-
rameter values. Theoretically, by parameterization variability in the control
flow as well as in the processed data or the behavior of single execution
steps can be controlled.

3.2.4 Variability in Data Types

In process models variability in data types reflects in the dataflow exchanged
between subprocesses. Also the control flow within a process can depend
on the type of data being forwarded. The type dependency of calculations
whose details are hidden on the process model level, can also be repre-
sented in process models. If data storages are represented in the process
model, variations in the type of data they store can be represented.

9

3.3 Composite Variability Mechanisms

3.3.1 Inheritance

Specialization of subprocesses in process models corresponds to the spe-
cialization of components or classes in static diagrams. Inheritance allows
for the replacement or addition of model elements in the derived process
diagram.

3.3.2 Design Patterns

Generally speaking, design patterns based on information hiding and inheri-
tance like the Strategy design pattern can be represented in processes using
encapsulation of varying subprocesses and process inheritance.

3.3.3 Extensions/Extension Points

A process shall be extendible at certain places by encapsulated subproc-
esses, whether the extending subprocess has been predefined during the
product line infrastructure development or not. The place where the process
can be extended is referred to as extension point. Thus a variant-rich proc-
ess model should provide means for inserting encapsulated optional sub-
processes at these extension points. An extending encapsulating subproc-
ess must have a compatible interface in order to be integrable into the proc-
ess at the corresponding extension point.

Extensions/extension points can be used together with Null-Subprocesses,
which are integrated into a variation point if the optional behavior shall be
omitted. The Null-subprocess has the same interface as the process to be
omitted but doesn’t contain any visible behavior.

Processes can also be extended by delegating functionality to external sub-
processes. Delegation can be realized by invoking external subprocesses
synchronously or asynchronously. Moreover, optional return values may be
processed subsequently. Encapsulated processes can be aggregated by
means of extensions.

10

4 Variability Mechanisms for UML Activity Diagrams

This section analyzes the transfer of the variability mechanisms for generic
processes outlined in 3 onto UML Activity Diagrams [OMG03, Pen03].

Concerning the regarded part of the Activity Diagram specification, we will
concentrate on the IntermediateActivities package and will use only model-
ing elements from other packages if it’s unavoidable for modeling the re-
spective variability mechanism. The concentration on the IntermediateActivi-
ties package leads to a reduction of complexity for the definition of variability
mechanisms for Activity Diagrams. On the other hand, this reduction is not
that critical since Intermediate Activities comprise modeling elements, which
are absolutely sufficient for many applications.

4.1 Basic Variability Mechanisms

4.1.1 Encapsulation of Varying Subprocesses

Assuming that Actions are the analog concept for components in Activity
Diagrams, the variability mechanism information hiding applies to varying
Activities hidden behind the invariant interface of the invoking CallBehavio-
rAction. The interface of the CallBehaviorAction is represented by the num-
ber, types and ordering of its Input and OutputPins as well as the classifier
assigned to the CallBehaviorAction as its context. The invoked Activity vari-
ants must have the same interface as the invoking CallBehaviorAction. An
Action-Interface can be applied for realizing alternative as well as optional
behavior. The latter can be realized by invoking a Null-Activity.

4.1.2 Adding Actions

The addition of Actions in Activity Diagrams corresponds to the addition of
execution steps in generic process models. Theoretically, the addition of Ac-
tions can happen at arbitrary places in the process flow. However, due to the
layout guidelines for Activity Diagrams, the addition of Actions has to be re-
stricted to the insertion between two ActivityNodes. Insertions between mul-
tiple ActivityNodes are not allowed. If an Action is added into an Activity Dia-
gram the rules for adding Actions depend on the point in the Activity Dia-
gram where the Action shall be added. If the preceding and succeeding Ac-
tivityNode is an Action, an Action can be added whose input and output in-
terfaces are compatible to the interfaces of the surrounding Actions. If only

11

one of the surrounding ActivityNodes is an Action, the Input and OutputPin
of the added Action have to be compatible to the adjunctive preceding or
succeeding Action. If neither the predecessor nor the successor is an Action
the Input and OutputPin of the inserted Action have to be compatible to the
object type transported by the ActivityEdge connecting the preceding and
succeeding ActivityNode.

4.1.3 Replacing Actions

The replacement of an execution step in process models corresponds to the
replacement of an Action Act by an Action Act-R in Activity Diagrams. During
the replacement of an Action by another Action in Activity Diagrams the
compatibility of the replaced Actions has to be regarded.

4.1.3.1 Interface Compatibility
In order to define the replacement of Actions in Activity Diagrams, interface
compatibility of Actions has to be defined. This is described in the following.

Type-compatibility of two input pins

An InputPin is type-compatible to an InputPin , if the type of is
equal to or a supertype of the type of . can then be replaced by .

1IP 2IP 1IP

2IP 2IP 1IP

An OutputPin is type-compatible to an OutputPin , if the type of
 is equal to or a subtype of . can then be replaced by .

1OP 2OP

1OP 2OP 2OP 1OP

Type-compatibility of an input pin to an output pin and vice versa

An OutputPin OP is type-compatible to an adjunctive InputPin IP, if the type
of OP is equal to or a subtype of the type of IP.

An InputPin IP is type-compatible to an adjunctive OutputPin OP, if the type
of IP is equal to or a supertype of OP.

Compatibility of the input interfaces of two Actions

Given:

- an Action Act1 with an ordered number of input pins

IP_ACT1 = { , …, } 1
1IP 1mIP

12

- an Action Act2 with an ordered number of input pins

IP_ACT2 = { , …, } 2
1IP 2nIP

The input interface of the Action Act1 is compatible to the input interface of
the Action Act2, if

- Act1 and Act2 have the same number of input pins:
2_1_ ACTIPACTIP =

- Every input pin of Act1 is type compatible to the corresponding input pin
of Act2:

 →=∈∀∧∈∀ yxACTIPIPACTIPIP yx :2_1_ 21 1xIP is type-compatible to

 2yIP

Compatibility of the output interfaces of two Actions

Analogue to the compatibility definition for the input interfaces of two Ac-
tions.

Compatibility of the output interface of an Action to the input interface
of another Action

Given:

- an Action Act1 with an ordered number of output pins

OP_ACT1 = { , …, } 1
1OP 1mOP

- an Action Act2 with an ordered number of input pins

IP_ACT2 = { , …, } 2
1IP 2nIP

The output interface of an Action Act1 is compatible to the input interface of
an Action Act2, if

- Act1 has just as many output pins as Act2 has input pins:
2_1_ ACTIPACTOP =

- Every output pin of Act1 is type compatible to the corresponding input pin
of Act2:

 is type-compatible to

121 :2_1_ xyx OPyxACTIPIPACTOPOP →=∈∧∈∀
2
yIP

13

4.1.3.2 Rules for replacement of Actions
If Act-R has a compatible interface to Act it can replace Act offhand. If the in-
terface of Act-R is incompatible to the interface of Act, a wrapper Action Act-
W can be wrapped around Act-R that provides an invariant interface com-
patible to the interface of Act by means of information hiding as shown in
Figure 1. In Activity Diagrams the application of a wrapper Action requires
that Act has only one preceding and one succeeding Action, since the outgo-
ing arcs of several Actions could else meet in Act-W or the ingoing arcs of
many successor-Actions could go out from Act-W.

Figure 1: Wrapper Action

Act-RW-I W-O

Act-W

Act-Pre Act-Suc

Alternatively, required and provided interfaces of the Actions Act-Pre and
Act-Suc preceding and succeeding an Action Act-R, which invokes a varying
subprocess, are encapsulated each in separate Actions Act-PreReq and Act-
SucProv and are replaced together with Act-Rep. Thereby, Act-PreReq and Act-
SucProv provide an invariant interface to Act-Pre and accordingly to Act-Suc
using information hiding. Likewise the separated required and provided inter-
faces of the preceding and succeeding Actions of the Action to be omitted
can be omitted together with the Action.

The application of interface separation is illustrated in Figure 2. In this ex-
ample the Action Act-O shall be omitted. In order to retrieve a syntactically
correct Activity Diagram the required interface of Action Act-Pre and the pro-
vided interface of the Action Act-Suc are separated and deleted together
with Act-O.

Figure 2: Application of interface separation for omission of an Action

Act-OAct-Pre
Invar

Act-Suc
Invar

omitted part

Act-Pre Act-Suc

Act-
PreReq

Act-
SucProv

14

4.1.4 Omitting Actions

The omission of Actions in Activity Diagrams shall be restricted to the case
that the Action to be omitted has exactly one preceding and succeeding Ac-
tion. More sophisticated cases could require complicated adaptations of pre-
ceding ForkNodes and succeeding DecisionNodes and JoinNodes, which
can depend on the output data types of the Action. Cases like this should be
better handled by parameterization. For the case that the output interface of
the Action Act-Pre preceding Act-O is compatible to the input interface of the
Action Act-Suc succeeding Act-O, Act-O can be omitted offhand. If this is not
the case, the required interface of Act-Pre or the provided interface of Act-
Suc, or both, can be sourced out using interface separation and omitted to-
gether with Act-O as shown in Figure 2.

4.1.5 Parameterization

Parameterization for Activity Diagrams means that variations provided in an
Activity Diagram must be enactable by setting parameter values. If a pa-
rameter value can be selected from a set of several possible parameter val-
ues, this corresponds to the realization of a “range variation point” as de-
scribed in [BBG05]. Theoretically, by parameterization variants in the control
flow, the processed data and the behavior of single Actions of a process can
be activated. One way for realizing variations in the control flow is to param-
eterize decisionInputBehaviors (DecisionNodes) as shown in Figure 3. In the
cases depicted here the upper path is only taken if an input object has a
value that equals to the parameter “Param” (left DecisionNode), smaller (De-
cisionNode in the middle) or bigger than the parameter (DecisionNode on
the right).

Figure 3: Examples for the parameterization of DecisionNodes

O1 = Param

[true]

[false]

O1 = Param

[true]

[false]

O1 < Param

[true]

[false]

O1 < Param

[true]

[false]

O1 > Param

[true]

[false]

O1 > Param

[true]

[false]

Alternatively, variations in the control flow can be realized by parameterizing
the JoinSpecifications of JoinNodes, which is indicated in Figure 4. This al-
lows for the parameterization of the conditions under which a JoinNode will
issue a token. In this case, the JoinNode will fire once there is a token in Arc
1 containing an object whose value equals to “Param” or another condition
comes true which is not expressed here explicitly. Since a JoinSpecification
is normally not displayed in an Activity Diagram, in Figure 4 it is made visible
using an UML comment.

15

Figure 4: Parameterization of JoinSpecifications

[Parameter_set]

Object in Arc 1 = Param
OR … x

Variations in the control flow can also be realized by assigning guard ex-
pressions to ActivityEdges, whose value depends on the parameter value,
which is illustrated in Figure 5. A token entering the DecisionNode will take
the upper branch in case the Variable “Parameter_set” contains the value
“true” and the lower branch if it contains the value “false”.

Figure 5: Parameterization of ActivityEdges using parameterized guards
[Parameter_set AND
Expression]

[Parameter_not_set AND
Expression]

Actions can be parameterized using ValuePins. Thus it is possible to param-
eterize entire processes, which are invoked by the parameterized Action in
case the parameterized Action is a CallBehaviorAction. This is illustrated in
Figure 6.

Figure 6: Parameterization of Actions using ValuePins

Action

Parameter

The data forwarded between two Actions is parameterizable by applying Pa-
rameterSets and ValuePins. In the example in Figure 7 there can be two al-
ternative data flows between “Action 1” and “Action 2”. Object “Ox” will be
forwarded if “Parameter” has a certain value and “Oy” if it has another value.
How “Action 1” realizes that a token is issued via one or the other Parame-
terSet in dependence of its configuration is transparent at this level of ab-
straction and can be specified by a separate Activity invoked by the Action.

16

Figure 7: Example for parameterizing the data flow between two Actions

Action 1 Action 2Ox

Oy

Ox

Oy

Parameter

4.1.6 Variability in Data Types

On a process model level the utilization of templates is reflected in variations
of the data types passed between the Actions processing them. Also the
control flow may depend on the type of data being forwarded. The depend-
ency of the type of data an atomic Action performs its calculations can also
be depicted. Data storages represented in the process may contain different
types of data subject to their configuration. The difference between the vari-
ability mechanisms parameterization and templates is that using parameteri-
zation the data values in an Activity Diagram can be configured as described
in 4.1.5, while using templates the respective data types can be adapted to
the needs of a certain process variant. Thus, the same elements being sub-
ject to parameterization can also be subject to type change. Additionally, the
type of an ObjectNode can be changed, as well as the types of Pins, Activ-
ityParameterNodes and CentralBufferNodes.

4.2 Composite Variability Mechanisms

4.2.1 Inheritance

According to the Activity Diagram Inheritance definition in [ScP05], a subac-
tivity inherits from its superactivity according to the following
schema:

CA PA
CAPACA ∆⊕= . CA∆ comprises elements that shall be newly

added or that are already present in and shall be overwritten. desig-
nates the combination of with

PA ⊕
PA CA∆ that adds the new elements and re-

places existing ones which are subject to modification. These transforma-
tions being feasible during the derivation of subactivities using Activity Dia-
gram Inheritance are shown in Figure 8 and Figure 9. Simple Activity Dia-
gram elements can be replaced by simple Activity Diagram elements or sub-
processes. Likewise, Activity Diagram subprocesses can be replaced by
simple elements or subprocesses. Some basic rules for the addition and re-
placement of encapsulated subprocesses are described in 4.1.2 and 4.1.3.
Also simple Activity Diagram elements as well as subprocesses can be
added during derivation. The respective transformations described in

17

[ScP05] also guarantee syntactical and structural correctness for the derived
Activity Diagrams.

Figure 8: Activity Diagram inheritance replacement transformations
replaces Simple Element Subprocess

Simple Element X X
Subprocess X X

Figure 9: Activity Diagram inheritance addition transformations

is added
Simple Element X

Subprocess X

4.2.2 Design Patterns

Here we will concentrate on the “Strategy Pattern” as one of the Design Pat-
terns referenced most frequently in the context of Process Family Engineer-
ing (PFE). In Activity Diagrams the “Strategy Pattern” is realized by employ-
ing a Strategy-Action that contains a Null-Action and provides an invariant
interface using information hiding. Utilizing Activity Diagram Inheritance dif-
ferent variants of the Strategy-Action can be derived by applying the re-
quired Activity Diagram Inheritance transformations on the Null-Action con-
tained in the Strategy-Action. The strategy pattern is illustrated in Figure 10.

Figure 10: Strategy pattern for Activity Diagrams

I(C)Out I(S)InContext Strategy

Concrete
StrategyA

Concrete
StrategyB

I(S)Out

I(S)In

I(S)In

I(S)Out

I(S)Out

Null
Activity

I(S)OutI(S)In

Strategy
Parameter?

4.2.3 Extensions/Extension Points

In Activity Diagrams extension points can be realized using a CallBehavio-
rAction that invokes either a Null-Activity or an Activity containing an extend-
ing subprocess, which is shown in Figure 12. The Null-Activity performs no
processing and has the same interface as the Action invoking the subproc-
ess to be omitted. The structure of a Null-Activity is displayed in Figure 11. In
case an input object is expected to be doubled by subsequent Actions as

18

this is the case for object of type OA, a ForkNode performs the duplication. If
an object is not required in the subsequent process any more, it is discarded
by the Null-Activity. This is shown exemplarily for the object OA. Alternatively,
objects can also be forwarded without any modification, which is shown for
object OD. Apart from a Null-Activity implementation the variability mecha-
nism information hiding is required for providing Null-Activities.

Figure 11: Structure of Null-Activity

Null

Create
Object Type B

Create
Object Type B

Type OC

Type OA

Type OA

Type OA

Type OB

Type ODType OD

The CallBehaviorAction invoking the extending subprocess uses information
hiding for encapsulating the possible extensions. Alternatively the Strategy
Pattern (see 4.2.2) can be used for realizing extensions in Activity Diagrams.

Figure 12: Extensions in Activity Diagrams using CallBehaviorActions and a Null-Activity

Arbitrary AD
Subnet

Arbitrary AD
Subnet

Arbitrary AD
Subnet

Arbitrary AD
Subnet

Act
<<ExtensionPoint>>

Act
<<ExtensionPoint>>

NullNull Act-E1Act-E1

Activity Diagrams can also be extended by aggregation or delegation. Dele-
gation can be realized in Activity Diagrams by invoking external Activities
synchronously or asynchronously using SendSignalActions possibly proc-
essing return values of the invoked Activities. The synchronous invocation of
an external Activity is shown in Figure 13. The external Activity is invoked
and the processing proceeds with “Act2” only after the delegating Activity
has received the return value.

19

Figure 13: Synchronous invocation of an external Activity

Rec.
Resp.
Rec.
Resp.Invoke

Delegating Activity

Rec.
Invoc.
Rec.

Invoc.
Send
Resp.

Delegated
Behavior

Invoked Activity

Act1 Act2

In contrast to the synchronous invocation of external Activities the process-
ing can continue right away after the external Activity has been invoked. The
asynchronous invocation of an external Activity without subsequently proc-
essing a return value is shown in Figure 14.

Figure 14: Asynchronous invocation of an external Activity without receipt of a return value

Invoke

Delegating Activity

Rec.
Invoc.
Rec.

Invoc.

Invoked Activity

Act1 Act2

Figure 15 illustrates how the asynchronous invocation of an external Activity
and the subsequent processing of a return value can be modeled. The dele-
gating Activity invokes the external Activity. After the invocation the delegat-
ing Activity in parallel waits for the return value and continues with arbitrary
processing. These two parallel flows are joined once the delegating Activity
requires the return value for subsequent calculations. In this case at the lat-
est Act2 requires the return value of the invocation.

20

Figure 15: Asynchronous invocation of an external Activity without receipt of a return value

Delegating Activity

Rec.
Invoc.
Rec.

Invoc.

Invoke Act2

Arbitrary
Process

Act1

Send
Resp.

Delegated
Behavior

Invoked Activity

Rec.
Invoc.
Rec.

Invoc.

Optional delegation of functionality to Activities and optional aggregation of
Activities can be realized using the variability mechanisms extensions or the
variability mechanism adding Actions.

4.3 Notation for Variability Mechanisms in Activity Diagrams

After having described a set of variability mechanisms for Activity Diagrams,
a notation is required for relating the variation points within an Activity Dia-
gram to the corresponding variants and the variability mechanism to apply
for binding the variants to their variation points. Moreover, the product fea-
tures have to be linked to the corresponding variants in order to be able to
resolve the variability within the variant-rich process model according to the
product features to be regarded by the resulting process model.

In order to highlight product line specific variability in UML Activity Diagrams
and to separate this kind of variability from non product line specific variabil-
ity, the variation points will be marked using the stereotype <<VarPoint>>.
Additionally, they dispose of a tagged value with the key “id” that assigns
them a unique variation point identification number. The variants belonging
to a variation point are included into the Activity Diagram by connecting them
to the respective variation point using UML Dependencies as suggested by
[Cla01] for generic variability types. A stereotype added to the Dependency
relation indicates the variability mechanism to use for binding the variant to
the variation point. The variants have a stereotype that links them to the re-
spective feature, an approach also suggested in [RBS00]. An example for
the notation of variability in Activity Diagrams is shown in Figure 17. In this
case “Action 1” is the variant which can be bound to the variation point rep-
resented by a Null-Activity. For binding “Action 1” to the variation point the
variability mechanism “Extensions” is used. This is indicated by the
respective stereotype assigned to the Dependency relation, connecting the

21

variation point with the variant. Figure 16 lists the stereotypes to be assigned
to the Dependency relation for any variability mechanism.

Figure 16: Stereotypes for identification of variability mechanisms in UML diagrams

Variability Mechanism Stereotype

Information Hiding <<Implementation>>

Addition of Components <<Addition>>

Replacement of
Components <<Replacement>>

Omission of Components <<Omission>>

Parameterization <<Parameterization>>

Inheritance <<Inheritance>>

Strategy Pattern <<StrategyPattern>>

Extension/Extension Points <<Extension>>

“Action 1” is used to implement “Feature 1” as suggested by its stereotype.

Figure 17: Example for notation of variability in Activity Diagrams

Null
<<VarPoint>>

{id=1}

Action 1
<<Feature 1>>

<<Extension>>

All in all, for the integration of variability mechanisms in UML diagrams only
lightweight UML extension mechanisms will be applied in order to be inte-
grateable with small effort into existing UML tools.

22

4.4 Example

This section gives an example for the configuration of an extract of a motor
control unit process family. The FODA [CoN98] feature model in Figure 18
shows that the motor control unit can optionally check an immobilizer and be
responsible for the control of the additional equipment components air condi-
tion and icebox. For the sake of simplicity it shall here be assumed that the
motor control unit is either capable of controlling an icebox or an air condi-
tion.

Figure 18: Feature model for motor control unit
Motor Control Unit

Immobilizer

Air Condition Icebox

Equipment
Components

4.4.1 Equipment Components

Figure 19 shows the high-level motor control process family. The process
has three variation points: “start motor”, “controlled termination of proc-
esses”, and the ValuePin “Param_ExtLoads” of the “motor is running” Action.
However, only the “Param_ExtLoads” variation point is bound at this level
using the variability mechanism parameterization. Depending on whether the
derived process shall handle an optional icebox and air condition a respec-
tive value is set for the ValuPin “ExtLoads”. The default value is “none”.

23

Figure 19: Motor control unit high-level process

ignition
key on
stop

ignition
key on
stop

ignition
key on
start

ignition
key on
start

start
motor

<<VarPoint>>

motor is
running

controlled
termination of

processes
<<VarPoint>>

Motor control

ExtLoads = „None“
<<VarPoint>>

{id=1}

[motor_start_
successfull]

<<icebox>> <<aircondition>>

<<
Para

mete
riz

ati
on

>>

<<Parameterization>>

ExtLoads = Icebox ExtLoads = AirCondition

The impact of the configuration on the process is depicted in Figure 20 and
Figure 21. Figure 20 shows that the data passed between “monitoring of
loads” and “calculation overall load” in Activity “Motor running” depends on
its configuration as well as the optional control of the two equipment compo-
nents (“air condition control” and “icebox control”). The three parameter sets
serving as output of “monitoring of loads” and “calculation of overall load” re-
alize the variation of the data flow. The required torque is always forwarded
to “calculation overall load”, while the air condition load and icebox load are
optional.

24

Figure 20: “Motor running” subprocess

monitoring
of loads

<<VarPoint>>

calculation
overall load

air condition
control

icebox
control

[ExtLoads = AirCondition]

[ExtLoads = Icebox]

Load_AC Req_To Load_IB

torque
adjustment

load

[motor_running]

[motor_stop]

Motor running

<<VarPoint>>

<<VarPoint>>

<< VarPoint >>

ExtLoads<<VarPoint>>

<<VarPoint>>

Figure 21 shows the Activity “Monitoring of loads” in detail. Depending on
the assignment of the “ExtLoads” ValuePin the “air condition load” and “ice-
box load” optionally need to be retrieved in addition to the requested torque
depending on the handling of the car by the driver.

Figure 21: “Monitoring of loads” subprocess

Monitor
AirCond.

Load

Monitor
req. torque

Monitor
Icebox
Load

Monitoring of loads

[ExtLoads = AirCondition]

[ExtLoads = Icebox]

Torque
adjustm.
required

Torque
adjustm.
required

Load_AC

Req_To

Load_IB

<<VarPoint>>

<<VarPoint>>

ExtLoads<<VarPoint>>

25

4.4.2 Immobilizer

In order to include the processes required for the handling of an immobilizer,
the Actions “start motor” and “controlled termination of processes” shown in
Figure 22 need to be configured correspondingly. For the optional reactiva-
tion of the immobilizer during the shutdown of the motor control unit in “con-
trolled termination of processes”, the variability mechanism extensions is
applied.

Figure 22: Subprocesses with variability depending on the presence of an immobilizer

Start motor

Initialize Motor
Control Unit

<<VarPoint>>
{id=2}

Start
Relevant
Processes

Initiate Check of
Sensors and

Actors

Start Sensor
Independent

Actors

[false]

Check
Immobilizer

Sensors

Initiate
Immobilizer

Check

<<VarPoint>>
{id=3}

Start
Relevant
Processes

Initiate Check of
Sensors and

Actors

[true]

Immobilizer
Deactivated?
Immobilizer

Deactivated?

<<Inheritance>>

<<immobilizer>>

<<Inheritance>>

<<immobilizer>>

Controlled termination
of processes

Null
<<VarPoint>>

{id=4}

Termination of
relevant

processes

Activate
immobilizer

<<immobilizer>>

<<Extension>>

For retrieving the appropriate variant of the “start motor” subprocess the
variability mechanism Activity Diagram Inheritance can be applied using the
transformation rules shown in Figure 23.

26

Figure 23: Activity Diagram Inheritance substitutions applied in Figure 22

*
1Act

1)(InO 1)(OutO

nInO)(mOutO)(

*
mAct

1)(InO 1)(OutO

nInO)(mOutO)(

1)(InOF

nInOF)(

1
1*)(InOF

nInOF 1*)(

1
*)(mInOF

n
mInOF *)(

nOutOF 1*)(

1
*)(mOutOF

1
1*)(OutOF

n
mOutOF *)(

1)(OutOF

mOutOF)(

1FN

nFN

1JN

mJN

Act
1)(InO 1)(OutO

nInO)(mOutO)(

1)(InOF

nInOF)(
1)(OutOF

mOutOF)(

*Act
1)(InO 1)(OutO

nInO)(mOutO)(

1)(InOF

nInOF)(
1)(OutOF

mOutOF)(

1DN

mDN

ItOutOF 1)(

It
mOutOF)(

1MN

nMN

Act
1)(InO 1)(OutO

nInO)(mOutO)(

1)(InOF

nInOF)(
1)(OutOF

mOutOF)(

*
1Act

1)(InO 1)(OutO

nInO)(mOutO)(

*
mAct

1)(InO 1)(OutO

nInO)(mOutO)(

1)(InOF

nInOF)(

1
1*)(InOF

nInOF 1*)(

1
*)(mInOF

n
mInOF *)(

nOutOF 1*)(

1
*)(mOutOF

1
1*)(OutOF

n
mOutOF *)(

1)(OutOF

mOutOF)(

1FN

nFN

1JN

mJN

Act
1)(InO 1)(OutO

nInO)(mOutO)(

1)(InOF

nInOF)(
1)(OutOF

mOutOF)(

*Act
1)(InO 1)(OutO

nInO)(mOutO)(

1)(InOF

nInOF)(
1)(OutOF

mOutOF)(

1DN

mDN

ItOutOF 1)(

It
mOutOF)(

1MN

nMN

Act
1)(InO 1)(OutO

nInO)(mOutO)(

1)(InOF

nInOF)(
1)(OutOF

mOutOF)(

27

5 Variability Mechanisms for UML State Machines

This section analyzes the representation of the variability mechanisms de-
scribed in 3 for generic processes in UML State Machines.

Since UML Activities can be referenced in various parts of an UML State
Machine, the application of the variability mechanisms on the Activity repre-
sentation in State Machines has to be discussed as well.

5.1 Basic Variability Mechanisms

5.1.1 Encapsulation of Varying Subprocesses

In State Machines subprocesses can be encapsulated either in Activities
(using CallBehaviorActions) or States (using composite or submachine
states). Subprocesses encapsulated in states can best be modeled using
submachine states for which varying submachine implementations compliant
to the submachine state interface can be inserted. The interface of a subma-
chine state consists of entry and exit states. Additionally, the submachine
state may dispose of arcs meeting in and running out of the state’s edge.
However, arcs meeting in or running out of the state’s edge can be ne-
glected since they only lead over to the default starting point of the subma-
chine and are activated if one of the final states of the state machine is
reached respectively. On the other hand, deferrableTriggers and information
from which state a state has been derived are part of the interface of the
state.

Figure 24: Encapsulation of varying subprocesses in State Machines

Encapsulating
Submachine State

entry 1 exit point 1

exit point 2

Encapsulated Submachine 1

… …

…

Encapsulated Submachine n

… …

…

…

28

5.1.2 Addition, Replacement, Omission of Encapsulated Subprocesses

In State Machines encapsulated subprocesses are represented as subma-
chine states referencing a submachine which contains the encapsulated
subprocess. Now encapsulated subprocesses can be added, replaced or
removed from a State Machine by adding, replacing, or removing the respec-
tive submachine states, which contain the subprocess to be added, replaced
or omitted. The rules for adding, replacing and omitting encapsulated sub-
processes still have to be investigated in detail. Generally speaking, if an
encapsulated subprocess shall be replaced by an encapsulated subprocess
with a compatible interface, this corresponds to the case described in 5.1.1.
Else, if the interface of the replacing subprocess is incompatible, the ques-
tion rises how the transitions formerly connected to the replaced subprocess
shall be connected to the replacing subprocess. If a submachine state is
added, according to which rules can it be connected to the remaining proc-
ess? If a submachine state is omitted, what happens to the adjunctive transi-
tions and their related Activities? Shall the incoming and outgoing transitions
be merged? According to which rules? Or shall they be omitted? But this
may lead to a disjointed State Machine. The problems occurring during the
omission of a subprocess could be avoided by replacing the submachine to
be omitted by a “Null Submachine”.

5.1.3 Parameterization

The control flow of State Machines can be parameterized using guards. This
can lead to the selection of an outgoing arc at static choice points repre-
sented by a junction pseudo state. Here, the routing decision doesn’t depend
on the calculation results of a previously executed Activity. In dynamic
choice points, on the other hand, the calculation results of the preceding Ac-
tivity are evaluated before the routing decision is made. These two possibili-
ties are depicted in Figure 25. Since incoming and outgoing transitions of
fork and join nodes are not allowed to have guards, optional parallel calcula-
tions can only be activated and deactivated by enclosing an optional paral-
lely executable subprocess by choice and merge pseudo states, whose
transitions can be parameterized in order to activate or deactivate the op-
tional subprocess. This is shown in Figure 26. Concerning the dataflow, it
isn’t represented explicitly in State Machines.

The output of an Activity in a State Machine can be adapted by changing the
input parameters of the Activity. Optional Activities carried out during a tran-
sition can be activated/deactivated by adding respective guards to their tran-
sitions. According to [Gom05] also entry-, exit- and do-Activities can be acti-
vated/deactivated by means of guards.

29

Figure 25: Parameterization of decisions in State Machines
[param_not_set]

[param_set]

State1

[O1 = x]

[O1 = y]

State1 O1 =
Action(param)

Figure 26: Activitation/deactiviation of optional parallel processing through parameterization

[param_set]
State1

Optional
Subprocess1

Optional
Subprocess2

[param_not_set]

[param_not_set]

[param_set]

5.1.4 Variability in Data Types

In State Machines data types can only be represented as the type of input
and output data of an Activity. Theoretically, also in guard-conditions data
types can be evaluated.

5.2 Composite Variability Mechanisms

5.2.1 Inheritance

According to [BHK04] the UML specification provides an inheritance mecha-
nism for the derivation of specialized State Machines. While deriving special-
ized State Machines, simple states can be replaced by decomposed states
and orthogonal or decomposed states can be expanded by regions. New
transitions and substates can be introduced into an orthogonal state. The
submachine implemented by a submachine state can be changed. The new
submachine has to have at least the same number of entry- and exit-points
as the replaced submachine. Moreover, a transition may be replaced by an-
other transition. The new transition disposes of the same initial state and the
same triggers as the replaced transition. Final state, Actions and constraints
optionally connected to the transition have to be defined anew.

30

5.2.2 Design Patterns

Design Patterns using encapsulation and inheritance can also be repre-
sented in State Machines. The strategy pattern can be represented in State
Machines for example using a submachine state referencing an empty sub-
machine. From this empty submachine different variants can be derived by
means of State Machine inheritance and inserted instead of the empty sub-
machine. On Activities contained in the State Machine Diagram design pat-
terns can be applied as described in 4.2.2.

5.2.3 Extensions/Extension Points

Similar to Extensions and Extension Points in Activity Diagrams also in State
Machines Extensions can be realized by means of subprocess interfaces for
which implementing subprocesses containing the extending subprocess can
optionally be inserted. The Extensions/Extension Points variability mecha-
nism as defined for Activity Diagrams can also be applied on the Activi-
ties/Actions occurring in the State Machine.

Figure 27: Representation of extensions/extension points in State Machines

Extension Point

entry 1 exit point 1

exit point 2

Null State Machine Extension n

… …

…

…

Expression1default exit

5.3 Notation for Variability Mechanisms in State Machines

For linking variations to their respective variation points in a State Machine,
for describing by means of which variability mechanism the variants are in-
tegrated into the process and for assigning the variants to the product fea-
ture they realize, the same lightweight UML extensions can be used as for
Activity Diagrams.

31

5.4 Example

In this section we give an example for the application of different variability
mechanisms for UML State Machines on the basis of the motor control unit
process described in [RSW04].

Figure 29 shows the basic version of the motor control unit process without
immobilizer. This basic variant encapsulated in the “Stop” submachine state
can be replaced by a subprocess variant “Stop-Immobilizer”, which regards
the presence of an immobilizer using the Strategy Pattern.

Figure 28: Example for notation of variability in State Machines

Just as in Activity Diagrams also in State Machines variation points are high-
lighted using the <<VarPoint>> stereotype having a tagged value “id” con-
taining an unique variation point identifier. Variation points are interlinked
with their variants using a Dependency relation, which indicates the variabil-
ity mechanism to apply by means of an adjunctive stereotype showing the
name of the variability mechanism. For identifying a variability mechanism
the stereotypes from Figure 16 are used. The feature a variant implements is
indicated by a stereotype holding the feature name. An example for the nota-
tion of variability in State Machines is shown in Figure 28.

Extension Point
<<VarPoint>>

{id=1}

Submachine 1
<<Feature 1>>

<<Extension>>

32

Figure 29: Basic motor control unit process and immobilizer variant derived using the Strategy Pattern

«StrategyPattern»

 Stop: StopVariant1 <<VarPoint>> {id=2}

turn off

turn on

startshutdown

Startup

RunningShutdown

Error

- / -

error

StopVariant1 <<no immobilizer>>

Stop (II)

Stop (I)

entry / Initignition key I->II / -

turn off

turn on

start

«create»
ignition key

0->I / -

StopVariant2 <<immobilizer>>

Immobilizer
activated

Immobilizer
deactivated

activation of immobilizer / -

deactivation of immobilizer / -

Stop (II)

Stop (I)

ignition key
I->0 / -

entry / Init

turn off

turn on

start

errorshutdown

ignition key I->II / -
[IS_IN(Immobilizer

deactivated)]

ignition key II>I /
controlled termination of

processes

ignition key II->III /
set engine-state on start

ignition key II>I /
controlled termination of

processes

ignition key II->III /
set engine-state on start

ignition key
I->0 / -

errorshutdown

entry / prepare engine to
stop
exit / stop engine +
controlled termination of
processes

ignition key II>I /
controlled termination of

processes

[error-code <=
error-threshold]

[error-code >
error-threshold]

ignition key III->II / get
rotation speed

[rotation speed > 0]

[rotation speed = 0]

ignition key II>I / -

rotation speed = 0 / -

The variability can also be represented using Parameterization. This is depicted in Figure 30.

33

34

ignition key
I->0 / -

[rotation speed > 0]

Startup

[rotation speed = 0]

ignition key II>I / -

Running

rotation speed = 0 / -

Shutdown

Error

- / -

Immobilizer
activated

Immobilizer
deactivated

Stop (II)

Stop (I)

entry / Init

[IS_IN(Immobilizer
deactivated)]

ignition key I->II / -

«VarPoint»
[immobilizer] {id=4}

«VarPoint»
[¬immobilizer]

{id=3}

Null

«VarPoint»
[immobilizer] {id=4}

«create»
ignition key

0->I / -
ignition key II>I /

controlled termination of
processes

deactivation of
immobilizer / -

activation of
immobilizer / -

entry / prepare engine to
stop
exit / stop engine +
controlled termination of
processes

ignition key II>I /
controlled termination of

processes

ignition key II->III /
set engine-state on start

[error-code <=
error-threshold]

[error-code >
error-threshold]

ignition key III->II / get
rotation speed

Figure 30: Representation of the optional immobilizer using parameterization

6 Variability Mechanisms for BPMN

This section analyzes the representation of the variability mechanisms intro-
duced in chapter 4 in the Business Process Modeling Notation (BPMN).

6.1 Preliminaries

The BPMN places processes inside Business Process Diagrams (BPD). A
so-called variant rich business process diagram needs to contain three addi-
tions to standard business process diagrams. The first addition is a marking
of the places where variability occurs. Second, the possible resolutions
should be shown in the diagram. Third, the variability mechanism used to
derive the resolution should be shown.

The first requirement, the identification of variation points, can be adapted by
the use of annotations in BPMN. However, this approach has some draw-
backs. An annotation marking a variation point cannot be distinguished from
other annotations in the diagram. Furthermore, the representation of variabil-
ity in the process models would differ from UML activity diagrams and State
Machines, whereas the notations are otherwise more or less congruent. To
overcome these limitations, we propose to adapt the concept of a stereotype
from the UML2 specification to BPMN. Each activity, association, and artifact
can have a stereotype attached. The name of the stereotype is written in
italic letters, placed between two angle brackets at each side. It is recom-
mended to place the stereotype above the name of the object if used within
an activity or artifact, or beside the association. In sub-processes, the
stereotype can be placed before the name of the sub-process. For the pur-
poses of a variant rich business process diagram, the introduction of a
stereotype called <<VarPoint>> is sufficient. This stereotype can also be ex-
pressed graphically as a puzzle-piece like marker at the bottom of an activ-
ity. However, if the graphical representation is used, the textual notation has
to be omitted.

Furthermore, each variation point is only marked at the level of detail in the
diagram where it actually occurs. Those, if a sub-process contains variation
points, but is not itself a variation point, it is not marked. The variation points
are then only contained in the expanded view.

For an easier understanding of a variant rich business process diagram and
the variability mechanisms used, the stereotype variant can be refined with
tagged values, as defined according to the UML2 specification. A tagged

35

value can be written below a stereotype in curly brackets by using the key-
word type: {tag=value}. Each stereotype can have two predefined tagged
values, feature and type. The feature tag represents the feature the variant
belongs to, whereas the type tag further indicates which kind of variability is
used. The values of the type tag can be optional, abstract, null, and default.
Their semantics will be explained later on.

To save screen as well as paper space, the four types of the stereotype
<<VarPoint>> , which are represented as tagged values, can also be repre-
sented as own stereotypes, thereby specializing <<VarPoint>>. The corre-
sponding stereotypes are <<Optional>>, <<Abstract>>, <Null>>, and <<De-
fault>>. Furthermore, the tagged values of a stereotype can be omitted in
the graphical representation.

Possible resolutions to a variation point are either contained in the graphical
representation of the variation point itself, thereby representing the default
behavior, as well as by using associations from the variation point to activi-
ties or artifacts which are marked as variant.

6.2 Basic Variability Mechanisms

Encapsulation of sub-processes. A BPMN sub-process can hide alterna-
tive variant sub-processes behind an invariant interface. Thereby, an inter-
face is defined as the set of input and output events of an activity. The inter-
face activity is marked with the stereotype <<Abstract>>. Possible realiza-
tions of the interface are connected using associations marked with <<Im-
plementation>>.

Figure 31: BPMN interfaces

Figure 31 shows the representation of different BPMN interfaces. While it is
possible to have more then one incoming or outgoing sequence flow from a
sub-process, only one start and end event is required. Multiple incoming se-
quence flows are and-joined, whereas multiple outgoing flows are and-
splited. It is possible to model exceptional as well as several kinds of inter-
mediate events at the edges. However, they do not directly connect to the in-
ternal sequence flow and act only as a visual representation for the outer
connection of different flows.

36

Figure 32: Alternative behavior by encapsulation

Figure 32 shows how the encapsulation of a sub-process can be used to
model alternative behavior. The alternative behavior can occur at a task
marked with the <<Abstract>> stereotype as well as the name of the varia-
tion point, which is “Payment” in the figure. Possible implementations are
shown as separate sub-processes, either collapsed or expanded. If there ex-
ists a default implementation, it can be marked with the stereotype <<De-
fault>>, like the sub-process “Credit Card Payment” in the figure. A directed
association ranging from the implementation sub-process to the variation
point marks the sub-process as a possible resolution to the variation point.
The associations have to be marked with the stereotype <Implementation>>.
Note the use of the graphical symbol to represent the stereotype <<Var-
Point>> at the bottom of the sub-process “Credit Card and Invoice Payment”.

Parameterization. Each BPMN attribute can be parameterized to support
optional, alternative, or range variation points. For a graphical representa-
tion, the attribute is written beside the element and surrounded with a group-
ing box. If the connection between the attribute and the element can be mis-
interpreted, an association should be used. Associations are also used to
link variant data objects that contain the possible parameters to the grouping
box that surrounds the attribute. The association is marked with the stereo-
type <<Parameterization>>.

Figure 33: Range/Value/Expression Parameterization

Figure 33 shows the parameterization of two different attributes. The upper
one parameterizes the ConditionExpression attribute of a sequence flow.
The default value is a guard that activates the sequence flow if the sales are

37

greater then €15.000. An alternative parameterization changes the attribute
to activate the sequence flow if the sales are greater then €50.000. The
lower one offers an alternative for the TimeDate attribute of the intermediate
timer event. The default behavior triggers the event at the end of each year,
whereas the alternative behavior triggers the event at the end of each quar-
ter.

6.3 Composite Variability Mechanisms

Inheritance. Inheritance modifies an existing (default) sub-process by add-
ing or removing elements regarding to specific rules. This allows for realizing
alternative variation points. An association represents inheritance from the
child activity to the parent activity when it is marked with the stereotype
<<Inheritance>>.

Figure 34: Alternative behavior by inheritance (collapsed example)

Figure 34 shows alternative behavior by the use of inheritance. The default
sub-process is shown at the top of the figure, placed between the sequence
flows. It is marked with the <<VarPoint>> stereotype. Optionally, the <<De-
fault>> stereotype could be used, but the placement of the sub-process be-
tween sequence flows already marks the default status. The alternative is
realized by inheritance, which is indicated by the <<Inheritance>> stereotype
at the association between the two sub-processes. The specialized sub-
process “Credit Card and Invoice Payment” belongs to the feature “Invoice”
as annotated with the tagged value “feature”. The stereotype <<VarPoint>>
is shown as a graphical marker (the puzzle piece like symbol at the bottom
of the sub-process).

38

Figure 35: Alternative behavior by inheritance (expanded example)

Figure 35 shows the expanded sub-processes of Figure 34. It can be seen
that the task “Handle Credit Card” is re-used in the specialization “Credit
Card and Invoice Payment”. However, there are currently no rules of how to
derive a correct specialization regarding to formal criteria.

Extension Points. Extension points use a combination of encapsulation and
“null sub-processes” to realize optional variation points. An extension point
activity is marked with the stereotype <<Null>. Associations marked with
<<Extension>> connect optional implementations. If there is only one op-
tional variant, it can be shown instead of the null activity, marked with a
<<Optional>> stereotype.

Figure 36: Optional behavior by Null activities

Figure 36 uses extension points to realize optional behavior. The optional
extension point “Quality Check” is marked with the <<Null>> stereotype.
Possible resolutions are attached with associations labeled with an <<Ex-
tension>> stereotype. Figure 36 contains one optional resolution of the
variation point, called “Test Painting”.

39

Figure 37: Simple optional behavior

If there is only one optional resolution of a variation point, it can be marked
with the stereotype <<Optional>> and directly placed between the sequence
flows, without the use of a <<Null>> task (Figure 37).

Design Patterns. The concepts of encapsulation and inheritance can be
used to implement design patterns that describe variability. There are no ad-
ditional graphical notations required; the patterns can be formed by the use
of the above mentioned concepts.

Figure 38: Alternative behavior by encapsulation and inheritance

Figure 38 implements the strategy design pattern. It is derived from Figure
32 with an additional inheritance relation between “Credit Card and Invoice
Payment” and “Credit Card Payment”.

6.4 Example

This section gives an example for the application of different variability
mechanisms for business process diagrams. The example extends the e-
business shop introduced in the PESOA technical report 8, appendix A
[Puh04] by directly expressing the variability resulting from the features of
the e-business shop.

40

Figure 39: High-level processes of the e-business shop example

Figure 39 contains the variant rich high-level workflow of the e-business
shop. The variant elements, which have been marked with color in [Puh04]
have been realized by different variability mechanisms. The Customer’s pool
contains the optional behavior “InvoiceCustomer”, which is represented by a
null activity. If the feature invoice is selected, the sub-process “Customer In-
voice Payment” is included at the extension point. Note that the original
model of the variant covered a gateway as well; this has been placed inside
the sub-process. The Shop’s pool has the optional task “Load Shopping
Cart” which is included if the feature “persistent shopping cart” is selected.
The null activity “InvoiceShop” is filled with “Shop Invoice Payment” if the in-
voice feature is selected. The task “Shop Invoice Payment” corresponds to
the “Customer Invoice Payment”. As both variation points are enabled by the
same feature, their realizations always appear together.

Figure 40: Expanded sub-process “Customer Invoice Payment”

41

Figure 40 contains the expanded sub-process “Customer Invoice Payment”.
The decision if the payment includes an invoice is evaluated inside the sub-
process as it is also part of the variation point.

Figure 41: Expanded sub-process “Shop Invoice Payment”

Figure 41 contains the expanded sub-process “Shop Invoice Payment”,
which equals Figure 40 as a counterpart for the Customer.

Figure 42: Expanded sub-process “Deliver Product Information”

Figure 42 contains the expanded sub-process “Deliver Product Information”.
It also uses the <<Optional>> stereotypes to mark “Retrieve Pictures” and
“Retrieve Reviews” as variation points with one possible resolution.

42

Figure 43: Expanded sub-process “Compose Shopping Cart”

Figure 43 contains the expanded sub-process “Compose Shopping Cart”. It
utilizes inheritance to modify the default behavior by inserting an additional
task “Save Shopping Cart” after the reconfiguration of the shopping cart has
taken place.

Figure 44: Expanded sub-process “Checkout”

Figure 44 expands the sub-process “Checkout”. It uses the concept of de-
sign patterns to describe the possible resolutions to the alternative variation
point “CalculateSum”. The first resolution implements the default behavior, it
only calculates the sum. The second, alternative resolution specializes the
default one by using inheritance to add the additional calculation of a dis-
count. The percentage of the discount is parameterized with a default value
of 3 The task “Debit Credit Card” has also an alternative implementation de-
rived by the use of inheritance.

43

7 Modeling Variability in Matlab/Simulink

The automotive domain is characterized by a variety of product variants
based on electronic systems. This is only enabled through an increasing us-
age of embedded software [3]. Significant here are concepts for variant con-
figuration of the embedded software. This comprises

• concepts for modeling variability in architecture models or directly in
the source code, and

• concepts for the management and the explicit presentation of variabil-
ity (e.g., using feature models).

Only the integration of both concepts enables a (partial) automation of the
configuration process, i.e., resolving variability in order to be able to instanti-
ate valid product variants.

Due to the increasing influence of model-based development of automotive
embedded software, concepts for modeling variability in software architec-
ture models have become of particular interest. An important exponent for
model-based software development is Matlab/Simulink [2]. Modeling a soft-
ware architecture that contains the variability of all product variants leads to
a generic architecture model in Matlab/Simulink. By means of the configura-
tion knowledge, the model of a concrete product variant can be extracted
from both the management of variability within the feature model and the ge-
neric architecture model. Afterwards, source code can be (auto-)generated
out of the model of a concrete product variant using Matlab.

Our proceeding is geared towards the generative domain model [1]. This
model separates application-oriented concepts within the feature model from
implementation concepts – in our case the architecture models. Features of
the domain of interest are managed and structured in a hierarchy within the
feature model. The feature model itself contains common and variable fea-
tures1 and their dependencies. For our implementation, we have modeled
the feature model outside Matlab/Simulink [4].

The following aspects are considered when mapping features out of the fea-
ture model on variability within the generic architecture model:

• Concepts for identifying variability within the generic architecture
model of the software (variation points)

1 Although not necessary in our contect, we regard common features as part of the feature model, too, in

order to include all features of the product family.

44

• Concepts for modeling variants (assigning variants to variation points)

This chapter describes alternatives for implementing these concepts in ge-
neric Simulink architecture models. These concepts are the basis for a (par-
tial) automation of variant configuration in the scope of model-based devel-
opment of embedded software with Matlab/Simulink.

7.1 Concepts for Modeling Variants

Basically, Matlab/Simulink provides two concepts for modeling variants in
architecture models:

• Substitution of whole Simulink blocks regarding the occurrence of (lo-
cal) variability in the context of configurable subsystem blocks –
comparable to the variability mechanism Inheritance.

• Application of (block) parameters – comparable to the variability
mechanism Parameterization

Both concepts are intrinsic to Matlab/Simulink. In the following, both con-
cepts are explained by means of examples. In particular, we will dwell on the
mapping of feature types out of the feature model [1] on concepts for model-
ing variants in Simulink.

7.1.1 Configurable Subsystem Blocks

A concept for describing variability includes the selection of alternative block
variants. These block variants are added to a library and assigned as a
member to a template block, the configurable subsystem block. Template
blocks enable selection of a variant from different alternatives in the generic
model. Now parts of the model can be designed to be exchangeable. Yet, it
is not necessary for exchangeable blocks to have the same in- and out-
signals or ports. Unused signals are terminated or grounded from Simulink
automatically and are not considered during code generation should source
code optimization become necessary. By using stateflow diagrams in com-
bination with configurable subsystem blocks, specific issues regarding trig-
ger signals have to be taken into account, i.e., handling them as normal in-
port signals.

45

Fig. 45. Example of a Configurable Subsystem Block2

The alternative choice can also be employed to model optional variants.
Admittedly, a default block has to be defined. This block is used, if the op-
tional element is selected. Generally, the default block is modeled as an
empty block (interrupting, terminating, and grounding signals) or as a block
that pipes the signals (directly from in-ports to out-ports). If applicable, a
combination of both may be used. In Figure 45 the template block
Schlupf_Reduzierung is a variation point. It can be replaced by one of the
member blocks Antischlupfregelung or Default, representing the optional
feature Antischlupfregelung. In our figure Antischlupfregelung has been se-
lected (depicted by the black angle around the block)

Combining configurable subsystem blocks also allows the implementation of
a multi-choice (or assignment) – although only in a complex form. In this
case, all signals from all member block combinations have to be available at
the template block from the start. However, alternatives and options are
more relevant for modeling variability in data and control flow, represented in
Simulink.

7.1.2 Application of (Block) Parameters

Parameterization is useful for variable scaling in data transformations within
function blocks. Typically, parameterization is used for linking variant-
specific characteristic curves or scaling of functions. The Simulink block li-
brary itself contains a number of such blocks, which are already parameter-
ized. These blocks can be customized for solving specific problems of a se-
lected application domain. Examples are one- or multidimensional lookup-
table blocks, parameterized by one- or multidimensional arrays. In particular,
these blocks are commonly employed in combination with characteristic
curve fields in the engine control unit. Basing on this pattern, developers can
define any generic parameterizable blocks.

2 The blocks Antischlupfregelung and Default are assigned to the template block as members. When us-

ing configurable subsystem blocks, one of the member blocks can be chosen in the model.

46

Parameters can also be used to specify branching in the control flow (and,
thus, in stateflow diagrams) statically, i.e., to manage variant-specific
branching. This is important, as it is not possible to exchange subelements
such as States, Subcharts, or Transitions in stateflow diagrams on the Simu-
link level.

With variability in behavior, i.e., within state charts, two options only arise:

• Exchange the whole chart (embedded in a configurable subsystem-
block)

• Design a chart that contains all possible variants. Afterwards, this
chart can be constrained statically for a specific variant using pa-
rameters (figure 46).

Fig. 46. State Chart with Parameter-based Variability Mechanism

7.2 Concepts for Identifying Variability

Template blocks (configurable subsystem blocks) and parameterized blocks
(parameterized masked blocks) are variation points and have their implicit or

47

explicit counterparts in the feature model3. In Simulink, these blocks have to
be flagged in order to indicate this relation.

Our recommendation here is to add a tag to the block properties of configur-
able subsystem blocks with the notation VariationPoint::Featurename. The
notation Featurename corresponds to the name of the variation point in the
feature model. This enables a simple mapping of variability in the feature
model with the generic Simulink model. Then, model construction commands
[2] can be employed to pursue and visualize this mapping. It has proven
useful to add additional information to the tags of variation points – such as
the mode for realizing variability. This additional information is not manda-
tory, but it facilitates configuring the models.

For parameterized blocks, our recommendation is to use the tags Variation-
PointIB:: Parametername and VariationPointIW::Parametername. This dif-
ferentiation depicts where parameters are set: directly at the parameterized
blocks (i.e. VariationPointIB) or in the model’s Matlab workspace (i.e. Varia-
tionPointIW).

When using configurable subsystem blocks, another convention for describ-
ing alternatives or options is to add a tag to the member blocks with the
name of the feature that is represented by the member blocks. This could be
done in the form of Feature::Featurename, where Featurename is the name
of the feature.

3 Not all features of feature diagrams are variation points. Features that are classified as mandatory and

do not have variable subfeatures do not require a counterpart in the Simulink model. They are only
modelled for the sake of completeness of the product family.

48

8 Conclusions and Outlook

In this report we have given an overview of variability mechanisms com-
monly applied in product family engineering, thereby identifying which of
these variability mechanisms are architecturally relevant and thus should be
represented in architecture models.

Next, we have analyzed the transferability of these architecturally relevant
variability mechanisms on a basic process model and their representation in
UML Activity Diagrams, UML State Machines, BPMN, and Matlab/Simulink –
an important exponent for model-based software development in Automotive
industry. Moreover, we have shown how to depict variation points, process
variants and variability mechanisms in UML Activity and State Machine dia-
grams using only lightweight UML extension mechanisms; the same is true
of variability mechanisms in Matlab/Simulink, too. As the BPMN does not
contain official extension mechanisms, we adopted the lightweight stereo-
type approach from the UML. This representation allows for the integration
of variant-rich processes into the product family engineering development
process.

In the next step of our work we will analyze by means of which techniques
the variability mechanisms for process models can be realized on the source
code level. This will allow for their automatic implementation in later phases
of the software development process, thus allowing for a more model driven
software development. This is also important for the next PESOA phase.

Concerning the integration with earlier phases of the software development
the long-term goal of our research is to categorize the variability mechanism
for process models according to the relevant non-functional characteristics
of their modification, like the maintenance of the syntactical correctness of a
process or the modifiability of the process according to respective metrics
[ReV04]. The idea is that using the right variability mechanisms the require-
ments of a system, which are realized by a corresponding system design
[IEE98], can be maintained while deriving process design variants for similar
software products by means of the suitable variability mechanisms.

Figure 45 visualizes the above mentioned ideas. The upper ellipse shows
possible non-functional requirements for software products. Syntactical cor-
rectness is the non-functional requirement relevant for software product A
and A’, whose process design model shall be derived from the process de-
sign model of software product A. Therefore, syntactical correctness is high-
lighted. The lower ellipse contains various variability mechanisms with differ-
ent non-functional properties they preserve if being used for the derivation of
process variants. An inheritance mechanism shall, for example, have the

49

property to be correctness-preserving. Therefore, it is selected to derive a
process design model for software product A’ from software product A as
shown in the lowest part of the figure. This is possible, since inheritance
shall be correctness-preserving and because the process of A shall also be
– according to the requirements of A – syntactically correct.

Figure 45: Requirement driven derivation of process variants by means of appropriate variability mechanisms

Matching

Non-functional
Requirement for

SW-Product A + A‘

syn

Performanc

Non-Functional
System Requirements

tactically correctsyntactically correct

Correctness-
preserving

e

Syntactical
Correctness

Modifiability

Process Design Model A Process Design Model A‘

Variability
Mechanisms for Process

Models
VM 1

VM 2
Inheritance

Matching

Non-functional
Requirement for

SW-Product A + A‘

syn

Performanc

Non-Functional
System Requirements

tactically correctsyntactically correct

Correctness-
preserving

e

Syntactical
Correctness

Modifiability Performanc

Non-Functional
System Requirements

Syntactical
Correctness

Modifiability

Process Design Model A Proce

e

Variability
Mechanisms for Process

Models
VM 1

VM 2
Inheritance

Variability
Mechanisms for Process

Models
VM 1

VM 2
Inheritance

ss Design Model A‘

At first, we will focus on the syntactical correctness as a non-functional re-
quirement which is essential for the design of a process.

50

References

[ABB01] C. Atkinson, J. Bayer, C. Bunse, E. Kamsties, O. Laitenberger,
R. Laqua, D. Muthig, B. Paech, J. Wüst, and J. Zettel. Com-
ponent-Based Product Line Engineering with UML. The Com-
ponent Software Series. Addison-Wesley Publishing Com-
pany, 2001.

[AnG00] M. Anastasopoulos and C. Gacek. Implementing product line
variabilities. IESE Report No. 089.00/E, November 2000.

[BaB01] F. Bachmann and L. Bass. Managing Variability in Software
Architectures. Proc. Symp. Software Reusability: Putting Software Reuse
in Context, , ACM Press, New York, pp. 126-132, 2001.

[BBG05] J. Bayer, W. Buhl, C. Giese, T. Lehner, A. Ocampo, F. Puhl-
mann, E. Richter, A. Schnieders, J. Weiland. Process Family
Engineering: Modeling variant-rich processes. PESOA Report
No. 18/2005, DaimlerChrysler Research and Technology,
Delta Software Technology, Fraunhofer IESE, Hasso-Plattner-
Institute, 2005.

[BFK05] J. Bayer, T. Forster, S. Kiebusch, T. Lehner, A. Ocampo, J.
Weiland. Merkmal- und Entscheidungsmodellierung. PESOA
Report No. 21/2005, DaimlerChrysler Research and Techno-
logy, Fraunhofer IESE, University of Leipzig, 2005.

[BHK04] Born, M., Holz, E., Kath, O.: Softwareentwicklung mit UML 2.
München: Addison-Wesley 2004

[BJM96] F. Buschmann, C. Jäkel, R. Meunier, H. Rohnert, M. Stahl.
Pattern-Oriented Software Architecture – A System of Pat-
terns. John Wiley & Sons, 1996.

[Bos00] Jan Bosch. Design and Use of Software Architectures: Adopt-
ing and Evolving a Product-Line Approach. Addison-Wesley,
Harlow, England et al., 2000.

[CE00] K. Czarnecki, U. Eisenecker, Generative Programming –
Methods, Tools, and Applications, Addison-Wesley, Boston,
MA, 2000

51

[Cla01] M. Clauß. Untersuchung der Modellierung von Variabilität in
UML. Diplomarbeit, Technische Universität Dresden, Fakultät
Informatik, Juli 2001.

[ClN02] P. Clements and L. Northrop. Software Product Lines: Prac-
tices and Patterns. Addison-Wesley, Upper Saddle River, NJ
07458, 2002.

[CoN98] S. Cohen, and L. Northrop. Object-Oriented Technology and
Domain Analysis. In Proceedings of the Fifth International
Conference on Software Reuse, 1998

[GBS01] J. van Gurp, J. Bosch, M. Svahnberg. On the Notion of Vari-
ability in Software Product Lines. Proceeedings of WICSA
2001, August 2001.

[GHJ95] E. Gamma, R. Helm, R. Johnson, J. Vlissides. Design Pat-
terns - Elements of Reusable Object-Oriented Software. Addi-
son Wesley, 1995.

[Gom04] H. Gomaa, D. Webber. Modeling Adaptive and Evolvable
Software Product Lines Using the Variation Point Model. In
Proceedings of the 37th Annual Hawaii International Confer-
ence on System Sciences, HICSS`04, pp. 1-10, IEEE Com-
puter Society Press, January 2004.

[Gom05] H. Gomaa. Designing Software Product Lines with UML: From
Use Cases to Pattern-Based Software Architectures. Addison-
Wesley, 2005.

[IEE98] Software Engineering Standards Committee of the IEEE
Computer Society. IEEE Recommended Practice for Software
Design Descriptions, Std 1016-1998

[JGJ97] Ivar Jacobson, Martin Griss, and Patrik Jonsson. Software
Reuse: Architecture, Process and Organization for Business
Success. Addison-Wesley Longman, Harlow, England et al.,
1997.

[KeM99] B. Keepence, M. Mannion. Using Patterns to Model Variability
in Product Families. In IEEE Software, pp 102-108, Ju-
ly/August 1999.

[MW04] The MathWorks, Simulink – Simulation and Model-based De-
sign, Natick, MA, 2004

52

[OMG03] OMG: Unified Modeling Language: superstructure. Version
2.0. 2003. Internet-URL: http://www.omg.org/cgi-
bin/doc?ptc/2003-08-02

[Pen03] T. Pender. UML Bible. Wiley Publishing, Inc., Indianapolis,
Indiana, 2003.

[Puh04] F. Puhlmann. Modeling Workflows in the E-Business Domain.
PESOA Report No. 08/2004, Hasso-Plattner-Institute, 2004.

[RBS00] M. Riebisch, K. Böllert, D. Streitferdt, B. Franczyk. Extending
the UML to Model System Families. Integrated Design and
Process Technology (IDPT-2000), 2000.

[ReV04] H.A. Reijers and I.T.P.Vanderfeesten. Cohesion and Coupling
Metrics for Workflow Process Design. In J. Desel, B. Pernici
and M. Weske, editors, Proceedings of the 2nd International
Conference on Business Process Management (BPM 2004),
Lecture Notes in Computer Science 3080, 290-305. Springer
Verlag, Berlin, 2004.

[RSW04] E. Richter, A. Schnieders, J. Weiland. Prozessanalyse und –
modellierung in der Domäne Automotive. PESOA Report No.
07/2004, DaimlerChrysler Research and Technology, Hasso-
Plattner-Institute, 2004.

[Sch97] H. A. Schmid. Systematic Framework Design by Generaliza-
tion. Communications of the ACM, 40(10):48 - 51, Oktober
1997.

[ScP05] A. Schnieders, F. Puhlmann. Activity Diagram Inheritance. In
Proceedings of the 8th International Conference on Business
Information Systems BIS, Poznan, Poland,
April 20-22 2005

[SGB03] M. Svahnberg, J. van Gurp, J. Bosch. A taxonomy of variable
realization techniques (DRAFT). Submitted November 2003,
accepted for publication in Software Practice & Experience.

[SvB03] Mikael Svahnberg and Jan Bosch. Issues Concerning Variabil-
ity in Software Product Lines, volume June of 146. Lecture
Notes in Computer Science, 2003.

53

http://www.omg.org/cgi-bin/doc?ptc/2003-08-02
http://www.omg.org/cgi-bin/doc?ptc/2003-08-02
http://www.jillesvangurp.com/publications/SPEMAS.pdf
http://www.jillesvangurp.com/publications/SPEMAS.pdf

[SZ03] Jörg Schäuffele, Thomas Zurawka, Automotive Software En-
gineering – Grundlagen, Prozesse, Methoden und Werkzeu-
ge, Vieweg, Wiesbaden, Juli 2003

[WR05] J. Weiland, E. Richter, Konfigurationsmanagement varianten-
reicher Simulink Modelle, Tagungsband GI-Jahrestagung,
Bonn, September 2005 (to appear)

54

	Introduction
	Survey and Categorization of Existing Variability Mechanisms
	Information Hiding
	Inheritance
	Parameterization
	Templates
	Null-Classes
	Interface Separation
	Design Patterns
	Replacement of Components
	Omission of Components
	Extensions and Extension Points
	Addition of Components
	Delegation/Aggregation
	Further Variability Mechanisms

	Variability Mechanisms for Generic Processes
	Fundamental Process Concepts
	Basic Variability Mechanisms
	Encapsulation of Varying Subprocesses
	Addition, Replacement, Omission of Encapsulated Subprocesses
	Parameterization
	Variability in Data Types

	Composite Variability Mechanisms
	Inheritance
	Design Patterns
	Extensions/Extension Points

	Variability Mechanisms for UML Activity Diagrams
	Basic Variability Mechanisms
	Encapsulation of Varying Subprocesses
	Adding Actions
	Replacing Actions
	Interface Compatibility
	Rules for replacement of Actions

	Omitting Actions
	Parameterization
	Variability in Data Types

	Composite Variability Mechanisms
	Inheritance
	Design Patterns
	Extensions/Extension Points

	Notation for Variability Mechanisms in Activity Diagrams
	Example
	Equipment Components
	Immobilizer

	Variability Mechanisms for UML State Machines
	Basic Variability Mechanisms
	Encapsulation of Varying Subprocesses
	Addition, Replacement, Omission of Encapsulated Subprocesses
	Parameterization
	Variability in Data Types

	Composite Variability Mechanisms
	Inheritance
	Design Patterns
	Extensions/Extension Points

	Notation for Variability Mechanisms in State Machines
	Example

	Variability Mechanisms for BPMN
	Preliminaries
	Basic Variability Mechanisms
	Composite Variability Mechanisms
	Example

	Modeling Variability in Matlab/Simulink
	Concepts for Modeling Variants
	Configurable Subsystem Blocks
	Application of (Block) Parameters

	Concepts for Identifying Variability

	Conclusions and Outlook

