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Abstract 

This report describes the representation of variant rich process models and 
the derivation of concrete process models using variability mechanisms. 
Therefore based on a study of existing variability mechanisms, architectur-
ally relevant variability mechanisms are identified and their transfer first onto 
generic processes and then onto UML Activity Diagrams, UML State Ma-
chines, BPMN, and Matlab/Simulink is described. A number of practical ex-
amples demonstrates the application of the approach.

III 

PESOA is a cooperative project supported by 
the federal ministry of education and research 
(BMBF). Its aim is the design and prototypical 
implementation of a process family engineer-
ing platform and its application in the areas of 
e-business and telematics. 
The project partners are: 
 

· DaimlerChrysler AG 
· Delta Software Technology GmbH 
· ehotel AG 
· Fraunhofer IESE 
· Hasso-Plattner-Institute 
· University of Leipzig 

 
 
PESOA is coordinated by 
Prof. Dr. Mathias Weske 
Prof.-Dr.-Helmert-Str. 2-3 
D-14482  Potsdam 
 
www.pesoa.org 





 

Table of Contents 

1 Introduction 1 

2 Survey and Categorization of Existing Variability 
Mechanisms 3 

2.1 Information Hiding 4 
2.2 Inheritance 4 
2.3 Parameterization 4 
2.4 Templates 5 
2.5 Null-Classes 5 
2.6 Interface Separation 5 
2.7 Design Patterns 5 
2.8 Replacement of Components 5 
2.9 Omission of Components 6 
2.10 Extensions and Extension Points 6 
2.11 Addition of Components 6 
2.12 Delegation/Aggregation 6 
2.13 Further Variability Mechanisms 6 

3 Variability Mechanisms for Generic Processes 8 
3.1 Fundamental Process Concepts 8 
3.2 Basic Variability Mechanisms 8 
3.2.1 Encapsulation of Varying Subprocesses 8 
3.2.2 Addition, Replacement, Omission of Encapsulated 

Subprocesses 9 
3.2.3 Parameterization 9 
3.2.4 Variability in Data Types 9 
3.3 Composite Variability Mechanisms 10 
3.3.1 Inheritance 10 
3.3.2 Design Patterns 10 
3.3.3 Extensions/Extension Points 10 

4 Variability Mechanisms for UML Activity Diagrams 11 
4.1 Basic Variability Mechanisms 11 
4.1.1 Encapsulation of Varying Subprocesses 11 
4.1.2 Adding Actions 11 
4.1.3 Replacing Actions 12 
4.1.4 Omitting Actions 15 
4.1.5 Parameterization 15 
4.1.6 Variability in Data Types 17 
4.2 Composite Variability Mechanisms 17 
4.2.1 Inheritance 17 

vii 



 

4.2.2 Design Patterns 18 
4.2.3 Extensions/Extension Points 18 
4.3 Notation for Variability Mechanisms in Activity Diagrams 21 
4.4 Example 23 
4.4.1 Equipment Components 23 
4.4.2 Immobilizer 26 

5 Variability Mechanisms for UML State Machines 28 
5.1 Basic Variability Mechanisms 28 
5.1.1 Encapsulation of Varying Subprocesses 28 
5.1.2 Addition, Replacement, Omission of Encapsulated 

Subprocesses 29 
5.1.3 Parameterization 29 
5.1.4 Variability in Data Types 30 
5.2 Composite Variability Mechanisms 30 
5.2.1 Inheritance 30 
5.2.2 Design Patterns 31 
5.2.3 Extensions/Extension Points 31 
5.3 Notation for Variability Mechanisms in State Machines 31 
5.4 Example 32 

6 Variability Mechanisms for BPMN 35 
6.1 Preliminaries 35 
6.2 Basic Variability Mechanisms 36 
6.3 Composite Variability Mechanisms 38 
6.4 Example 40 

7 Modeling Variability in Matlab/Simulink 44 
7.1 Concepts for Modeling Variants 45 
7.1.1 Configurable Subsystem Blocks 45 
7.1.2 Application of (Block) Parameters 46 
7.2 Concepts for Identifying Variability 47 

8 Conclusions and Outlook 49 
 

 

viii 



 

1 Introduction 

One of the main objectives of the PESOA project consists in investigating an 
approach for the development of families of process oriented software. One 
key concept of product family oriented software development is that reuse 
shall take place on any stage of the software development process, i.e. not 
only code shall be reused to a maximum, but potentially also any other soft-
ware development artifact, like architecture or design models. For the opti-
mal reuse of software development artifacts so called variability mechanisms 
play a crucial role. Variability mechanisms allow for the derivation of artifact 
variants from generic artifacts. While the derived artifact variant is typically 
specific for a concrete member of the product line, the generic artifact has 
features, which are common for more than one member of the product line. 

Up to now existing variability mechanisms mostly target at the static aspects 
of a software system’s model, while approaches for process oriented soft-
ware as being dealt with in process family engineering have been neglected. 
Therefore, the intention of this report is to analyze thoroughly how variability 
mechanisms for process models can be acquired. 

For this we will access the considerable number of variability mechanisms, 
which have already been published. These variability mechanisms can be 
classified according to the point in the product line lifecycle at which they 
perform the resolution of the variability, which is also referred to as the bind-
ing time. In our case only those variability mechanisms are relevant which 
resolve variability at the architecture or design model level or which at least 
have a visible impact on the architecture or design of a system. For the sake 
of simplicity we will call these variability mechanisms architecturally relevant 
variability mechanisms. Our approach for obtaining variability mechanisms 
for process models is to investigate the transferability of architecturally rele-
vant variability mechanisms to process models. We take this approach as 
we assume that only architecturally relevant variability mechanisms can be 
transferred to process models since also process models of process ori-
ented systems only contain architecture or design related information. 

Our proceeding therefore is first to identify architecturally relevant variability 
mechanisms and secondly describe their usability in process oriented archi-
tecture models. We thereby neither claim that the described variability 
mechanisms for process oriented architecture models form a complete or 
minimal set. 

This report is structured as follows: Section 2 gives an overview of existing 
variability mechanisms and divides them into architecturally and non-
architecturally relevant variability mechanisms. Section 1 describes funda-
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mental process concepts based on which the architecturally relevant vari-
ability mechanisms from section 2 will be described for generic processes. 
Section 4, 5, 6, 7 describe how these variability mechanisms can be repre-
sented in UML Activity Diagrams, UML State Machines, BPMN, and Mat-
lab/Simulink. Section 8 summarizes the main contents of this report and 
gives an outlook to future research. 
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2 Survey and Categorization of Existing Variability Mechanisms 

As already mentioned one of the main goals of product line oriented soft-
ware development is to maximize the reuse of software development arti-
facts (like design models, code, etc.) for the members of the product line. 
For this purpose the product line utilizes generic artifacts. We refer to these 
artifacts as generic since they have properties, which are common to more 
than one member of the software product line. But usually the generic arti-
facts cannot be used as is for a concrete product line member. The reason 
for this is that typically the requirements of the members of the product line, 
which require the generic artifact, differ slightly. Therefore, a generic artifact 
normally has to be adapted to the specific requirements of a concrete prod-
uct in order to be usable by that product. For being adaptable to the re-
quirements of a concrete member of the product line, a generic artifact dis-
poses of variation points, which specify the parts in which the requirements 
of the concrete products vary. This allows the generic artifact for being 
adapted to the requirements of a concrete product by binding variants, which 
suit the needs of the concrete product, to every variation point of the generic 
artifact. 

For the adaptation of the generic artifacts so-called variability mechanisms 
are required. According to [JGJ97] variability mechanisms are techniques for 
specializing abstract components. [SvB03] more generally denotes variability 
mechanisms as “techniques available for introducing variability into the soft-
ware product line”. Since we focus on processes in this report we don’t con-
sider the first definition appropriate, while the second one can be concretized 
more. Therefore we suggest the following definition of variability mecha-
nisms: 

Variability mechanisms denote techniques for the derivation of process 
model variants from existing process models. 

The careful selection of an appropriate variability mechanism for specializing 
an artifact is important since the selection of an unsuitable variability mecha-
nism may lead to the problem that a generic artifact cannot be adapted when 
required. Because of their importance for the product line oriented software 
development, variability mechanisms have been investigated extensively, 
leading to the identification of a great number of variability mechanisms 
[AnG00, Bos00, CIN02, JGJ97, SvB03]. However, for our purpose to define 
variability mechanisms for process architecture models only “architecturally 
relevant” variability mechanisms are of interest. A variability mechanism is 
considered to be architecturally relevant, if it has a visible impact on the ar-
chitecture of a system. In addition to variability mechanisms on the architec-
ture level, we differentiate between variability mechanisms on the product 
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and on the runtime level. Product time comprises those types of variability 
which are resolved during the implementation of a single product, while the 
runtime level refers to resolution of variability at runtime. In 2.13 variability 
mechanisms for the product and runtime level are described. In 3 we then 
describe the usability of the architecturally relevant variability mechanisms in 
process oriented architecture models. 

In the remainder of this section we will give a brief overview of some of the 
most important architecturally relevant variability mechanisms. 

2.1 Information Hiding 

Information hiding as described by [Gom04, Gom05] means that different 
versions of a component facilitating different members of a product line can 
be encapsulated by means of a common interface. Information hiding is also 
referred to by [GBS01] as the utilization of black box components. 

2.2 Inheritance 

Inheritance together with the related concept Polymorphism represents an 
important variability mechanism that serves as the basis for several other 
variability mechanisms like Extensions and Design Patterns besides being 
usable in isolation. Due to its relevance for product family engineering inheri-
tance is addressed in most publications dealing with variability mechanisms 
like in [Bos00, Gom05, JGJ97, SvB03]. Inheritance is used as a variability 
mechanism on the model level as well as on the code level. 

2.3 Parameterization 

According to [BaB01, Gom05, JGJ97, SvB03] using parameterization com-
ponent variants are generated by configuring the generic components with a 
set of parameter values. The prerequisite for this is that all possible variants 
are provided in the component’s code. Parameterization is used typically if 
there are many small variation points, which causes  minor changes to the 
system for a variant feature [JGJ97]. Following the definition of [ClN02] fea-
tures are user-visible aspects or characteristics of a system and are typically 
organized in tree-structures during the domain analysis. 
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2.4 Templates 

Templates [Bos00, JGJ97, SvB03] are a technique that allows for postpon-
ing the decision on which type a process shall work, until the time the proc-
ess is performed instead of the time of its implementation. 

2.5 Null-Classes 

The optional parts of a component’s behavior can be sourced out into a 
separate class. Now, if the optional behavior shall be omitted a null class 
can be generated that acts as a placeholder for the class containing the op-
tional behavior [SGB03]. 

2.6 Interface Separation 

As already mentioned, variability in product line architectures can be realized 
by replacing components. Thereby, the replacing component variant can 
have a different interface than the replaced component. In order to be able 
to restrict the variability to the product architecture derivation without having 
to make adaptations at the code level later, both the provided interface of the 
varying component as well as the required interface of the component im-
porting the varying component can be sourced out into separate classes. 
The configuration management tool can then decide which interface classes 
to use together with which component variants. This interface separation 
technique is described in [SGB03]. 

2.7 Design Patterns 

Certain Design Patterns are frequently referred to as a variability mechanism 
[Bos00, Gom05, SvB03]. “Gang of Four” Design Patterns [GHJ95] used as 
variability mechanisms are the “Adapter”, “Strategy”, “Template Method”, 
“Factory”, “Abstract Factory”, and “Builder” pattern. Moreover, the “Broker 
Pattern” [BJM96] can be used as a variability mechanism, as well as the 
“Single Adapter”, “Multiple Adapter”, and “Option” Pattern [KeM99]. How-
ever, according to [Sch97], except for a small number of Design Patterns 
any Design Pattern provides a way to implement variability. 

2.8 Replacement of Components 

In static models entire components can be replaced by other components, 
which is described by [ClN02]. In general, if a component is replaced by an-
other component it has to be considered that related components may not 
be compatible to the interface of the replacing component any more. 
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2.9 Omission of Components 

Variations within a static model can be realized by omitting components en-
tirely, as described by [ClN02]. The question arises what happens to the re-
lations of the components connected to the component to be omitted, i.e. 
with the required and provided interfaces of the related components? They 
also have to regard the absence of the component they referred to originally. 

2.10 Extensions and Extension Points 

Extensions and Extension Points [Bos00, ClN02, JGJ97, SvB03] are used if 
a component can be extended at a certain predefined point by additional be-
havior selected from a set of possible variants.  

2.11 Addition of Components 

Components can also be added to static structures at arbitrary points in the 
diagram. One question is how the new component is connected to the re-
maining diagram. The difference between extensions/extension points and 
the addition of components is that for extensions in contrast to the addition 
of components a placeholder (the extension point) is provided for the com-
ponent to be added, while this isn’t the case if components are added. The 
addition of components is outlined as a variability mechanism by [ClN02]. 

2.12 Delegation/Aggregation 

As described in [ClN02] the functionality of an object can also be extended 
by delegating the calculations the object cannot perform on its own to an-
other object encapsulating the (varying) functionality for performing the re-
spective calculations. Alternatively, the invoked object can also be aggre-
gated by the invoking object. 

2.13 Further Variability Mechanisms 

In addition to variability mechanisms, which focus on the product architec-
ture derivation phase, there is a great number of variability mechanisms be-
ing clearly targeted at other points in time during the lifecycle of the product 
line and therefore will not be considered here. Variability mechanisms at 
product time [ClN02] are automatic generation [ClN02, JGJ97, SvB03], con-
ditional compilation [BaB01, ClN02, SvB03], frames [ClN02], static libraries 
[ClN02], scripting [GBS01], configuration [JGJ97, SGB03, SvB03], if-
statements [SGB03], and binary replacement [GBS01]. Variability mecha-
nisms applied at runtime are, for example, the dynamic binding of compo-
nents at runtime [ClN02, GBS01, SGB03] and reflection [ClN02]. Additionally 
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there are variability mechanisms which don’t fit in any of these binding time 
categories, like for example Use Case inheritance [JGJ97]. 

 

7 



 

3 Variability Mechanisms for Generic Processes 

This section starts with an introduction of the fundamental process concepts 
based on which we can describe variability mechanisms for process models 
generically. Our intention thereby is rather to introduce the terminology we 
will use, than to define a process meta model.  

Next, we describe the transfer of variability mechanisms identified to be rele-
vant on an architecture model level on generic process models as described 
previously. Thereby, we group the variability mechanisms in basic and com-
posite variability mechanisms. Basic variability mechanisms do not rely on 
other variability mechanisms, while composite variability mechanisms require 
the application of basic variability mechanisms. 

3.1 Fundamental Process Concepts 

A process can consist of subprocesses, which can be encapsulated hiding 
the details of the encapsulated subprocess behind a subprocess interface. 
Thereby, subprocesses can be combined as single execution steps. More-
over, subprocesses can be invoked synchronously and asynchronously from 
within the process either receiving return values or not. Subprocess steps 
can have incoming and outgoing control and data flow edges and contain 
process execution steps, which are interconnected by control and data flow 
edges. Control and data flow edges describe the control and data flow within 
the process. The data flow is characterized by the data types exchanged be-
tween the processing steps in the process. The behavior of an execution 
step can be parameterized as well as the control and data flow edges of a 
process. Parameterization of the control flow leads to changes in the routing 
within the process while parameterization of the data flow leads to variation 
in the processed data types. The control flow can also depend on the data 
types forwarded in the data flow. The behavior of subprocesses can also 
depend on their input data types. Also data storages can be represented in a 
process model. Data storages can only contain data of a certain type. 

3.2 Basic Variability Mechanisms 

3.2.1 Encapsulation of Varying Subprocesses 

Assuming that subprocesses in process models are the analog concept to 
components in component models, subprocess interfaces can be defined, 
which hide details concerning the internal structure of the subprocess. This 

8 



 

allows for the insertion of different subprocess variants hidden by the invari-
ant interface. 

3.2.2 Addition, Replacement, Omission of Encapsulated Subprocesses 

In process models encapsulated subprocesses can be added, replaced or 
omitted at potentially any place in the process model. Thereby, it has to be 
paid attention that the addition, replacement or omission of an encapsulated 
subprocess doesn’t lead to a structurally incorrect process description. If a 
subprocess is added the respective data flow and control flow edges are in-
terrupted by the newly added subprocess. If a subprocess is replaced by 
another subprocess especially the compatibility of the interface of the replac-
ing subprocess with the preceding and succeeding elements of the replaced 
subprocess has to be regarded. If an encapsulated subprocess is omitted 
this means that the respective execution step is ignored upon execution of 
the process. The control flow is therefore continued at the successors of the 
omitted execution step. Concerning the data flow the potential absence of 
data transformations originally performed by the omitted execution step has 
to be tolerable by subsequent process model elements. In subsequent exe-
cution steps the behavior depending on the transformed data has to be omit-
ted as well. 

3.2.3 Parameterization 

Through parameterization behavioral variants which are integrated in the 
process can be activated by configuring the process with corresponding pa-
rameter values. Theoretically, by parameterization variability in the control 
flow as well as in the processed data or the behavior of single execution 
steps can be controlled. 

3.2.4 Variability in Data Types 

In process models variability in data types reflects in the dataflow exchanged 
between subprocesses. Also the control flow within a process can depend 
on the type of data being forwarded. The type dependency of calculations 
whose details are hidden on the process model level, can also be repre-
sented in process models. If data storages are represented in the process 
model, variations in the type of data they store can be represented. 
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3.3 Composite Variability Mechanisms 

3.3.1 Inheritance 

Specialization of subprocesses in process models corresponds to the spe-
cialization of components or classes in static diagrams. Inheritance allows 
for the replacement or addition of model elements in the derived process 
diagram. 

3.3.2 Design Patterns 

Generally speaking, design patterns based on information hiding and inheri-
tance like the Strategy design pattern can be represented in processes using 
encapsulation of varying subprocesses and process inheritance. 

3.3.3 Extensions/Extension Points 

A process shall be extendible at certain places by encapsulated subproc-
esses, whether the extending subprocess has been predefined during the 
product line infrastructure development or not. The place where the process 
can be extended is referred to as extension point. Thus a variant-rich proc-
ess model should provide means for inserting encapsulated optional sub-
processes at these extension points. An extending encapsulating subproc-
ess must have a compatible interface in order to be integrable into the proc-
ess at the corresponding extension point. 

Extensions/extension points can be used together with Null-Subprocesses, 
which are integrated into a variation point if the optional behavior shall be 
omitted. The Null-subprocess has the same interface as the process to be 
omitted but doesn’t contain any visible behavior. 

Processes can also be extended by delegating functionality to external sub-
processes. Delegation can be realized by invoking external subprocesses 
synchronously or asynchronously. Moreover, optional return values may be 
processed subsequently. Encapsulated processes can be aggregated by 
means of extensions. 
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4 Variability Mechanisms for UML Activity Diagrams 

This section analyzes the transfer of the variability mechanisms for generic 
processes outlined in 3 onto UML Activity Diagrams [OMG03, Pen03]. 

Concerning the regarded part of the Activity Diagram specification, we will 
concentrate on the IntermediateActivities package and will use only model-
ing elements from other packages if it’s unavoidable for modeling the re-
spective variability mechanism. The concentration on the IntermediateActivi-
ties package leads to a reduction of complexity for the definition of variability 
mechanisms for Activity Diagrams. On the other hand, this reduction is not 
that critical since Intermediate Activities comprise modeling elements, which 
are absolutely sufficient for many applications. 

4.1 Basic Variability Mechanisms 

4.1.1 Encapsulation of Varying Subprocesses 

Assuming that Actions are the analog concept for components in Activity 
Diagrams, the variability mechanism information hiding applies to varying 
Activities hidden behind the invariant interface of the invoking CallBehavio-
rAction. The interface of the CallBehaviorAction is represented by the num-
ber, types and ordering of its Input and OutputPins as well as the classifier 
assigned to the CallBehaviorAction as its context. The invoked Activity vari-
ants must have the same interface as the invoking CallBehaviorAction. An 
Action-Interface can be applied for realizing alternative as well as optional 
behavior. The latter can be realized by invoking a Null-Activity. 

4.1.2 Adding Actions 

The addition of Actions in Activity Diagrams corresponds to the addition of 
execution steps in generic process models. Theoretically, the addition of Ac-
tions can happen at arbitrary places in the process flow. However, due to the 
layout guidelines for Activity Diagrams, the addition of Actions has to be re-
stricted to the insertion between two ActivityNodes. Insertions between mul-
tiple ActivityNodes are not allowed. If an Action is added into an Activity Dia-
gram the rules for adding Actions depend on the point in the Activity Dia-
gram where the Action shall be added. If the preceding and succeeding Ac-
tivityNode is an Action, an Action can be added whose input and output in-
terfaces are compatible to the interfaces of the surrounding Actions. If only 
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one of the surrounding ActivityNodes is an Action, the Input and OutputPin 
of the added Action have to be compatible to the adjunctive preceding or 
succeeding Action. If neither the predecessor nor the successor is an Action 
the Input and OutputPin of the inserted Action have to be compatible to the 
object type transported by the ActivityEdge connecting the preceding and 
succeeding ActivityNode. 

4.1.3 Replacing Actions 

The replacement of an execution step in process models corresponds to the 
replacement of an Action Act by an Action Act-R in Activity Diagrams. During 
the replacement of an Action by another Action in Activity Diagrams the 
compatibility of the replaced Actions has to be regarded. 

4.1.3.1 Interface Compatibility 
In order to define the replacement of Actions in Activity Diagrams, interface 
compatibility of Actions has to be defined. This is described in the following. 

Type-compatibility of two input pins 

An InputPin  is type-compatible to an InputPin , if the type of  is 
equal to or a supertype of the type of .  can then be replaced by . 

1IP 2IP 1IP

2IP 2IP 1IP

An OutputPin  is type-compatible to an OutputPin , if the type of 
 is equal to or a subtype of .  can then be replaced by . 

1OP 2OP

1OP 2OP 2OP 1OP

Type-compatibility of an input pin to an output pin and vice versa 

An OutputPin OP is type-compatible to an adjunctive InputPin IP, if the type 
of OP is equal to or a subtype of the type of IP. 

An InputPin IP is type-compatible to an adjunctive OutputPin OP, if the type 
of IP is equal to or a supertype of OP. 

Compatibility of the input interfaces of two Actions 

Given: 

- an Action Act1 with an ordered number of input pins 

IP_ACT1 = { , …, } 1
1IP 1mIP
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- an Action Act2 with an ordered number of input pins 

IP_ACT2 = { , …, } 2
1IP 2nIP

The input interface of the Action Act1 is compatible to the input interface of 
the Action Act2, if  

- Act1 and Act2 have the same number of input pins: 
2_1_ ACTIPACTIP =  

- Every input pin of Act1 is type compatible to the corresponding input pin 
of Act2: 

 →=∈∀∧∈∀ yxACTIPIPACTIPIP yx :2_1_ 21 1xIP  is type-compatible to 

 2yIP

Compatibility of the output interfaces of two Actions 

Analogue to the compatibility definition for the input interfaces of two Ac-
tions. 

Compatibility of the output interface of an Action to the input interface 
of another Action 

Given: 

- an Action Act1 with an ordered number of output pins 

OP_ACT1 = { , …, } 1
1OP 1mOP

- an Action Act2 with an ordered number of input pins 

IP_ACT2 = { , …, } 2
1IP 2nIP

The output interface of an Action Act1 is compatible to the input interface of 
an Action Act2, if 

- Act1 has just as many output pins as Act2 has input pins: 
2_1_ ACTIPACTOP =  

- Every output pin of Act1 is type compatible to the corresponding input pin 
of Act2: 

 is type-compatible to 

 

121 :2_1_ xyx OPyxACTIPIPACTOPOP →=∈∧∈∀
2
yIP
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4.1.3.2 Rules for replacement of Actions 
If Act-R has a compatible interface to Act it can replace Act offhand. If the in-
terface of Act-R is incompatible to the interface of Act, a wrapper Action Act-
W can be wrapped around Act-R that provides an invariant interface com-
patible to the interface of Act by means of information hiding as shown in 
Figure 1. In Activity Diagrams the application of a wrapper Action requires 
that Act has only one preceding and one succeeding Action, since the outgo-
ing arcs of several Actions could else meet in Act-W or the ingoing arcs of 
many successor-Actions could go out from Act-W.  

Figure 1:  Wrapper Action 

Act-RW-I W-O

Act-W

Act-Pre Act-Suc

 
 
Alternatively, required and provided interfaces of the Actions Act-Pre and 
Act-Suc preceding and succeeding an Action Act-R, which invokes a varying 
subprocess, are encapsulated each in separate Actions Act-PreReq and Act-
SucProv and are replaced together with Act-Rep. Thereby, Act-PreReq and Act-
SucProv provide an invariant interface to Act-Pre and accordingly to Act-Suc 
using information hiding. Likewise the separated required and provided inter-
faces of the preceding and succeeding Actions of the Action to be omitted 
can be omitted together with the Action. 

The application of interface separation is illustrated in Figure 2. In this ex-
ample the Action Act-O shall be omitted. In order to retrieve a syntactically 
correct Activity Diagram the required interface of Action Act-Pre and the pro-
vided interface of the Action Act-Suc are separated and deleted together 
with Act-O. 

Figure 2:  Application of interface separation for omission of an Action 

Act-OAct-Pre
Invar

Act-Suc
Invar

omitted part

Act-Pre Act-Suc

Act-
PreReq

Act-
SucProv
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4.1.4 Omitting Actions 

The omission of Actions in Activity Diagrams shall be restricted to the case 
that the Action to be omitted has exactly one preceding and succeeding Ac-
tion. More sophisticated cases could require complicated adaptations of pre-
ceding ForkNodes and succeeding DecisionNodes and JoinNodes, which 
can depend on the output data types of the Action. Cases like this should be 
better handled by parameterization. For the case that the output interface of 
the Action Act-Pre preceding Act-O is compatible to the input interface of the 
Action Act-Suc succeeding Act-O, Act-O can be omitted offhand. If this is not 
the case, the required interface of Act-Pre or the provided interface of Act-
Suc, or both, can be sourced out using interface separation and omitted to-
gether with Act-O as shown in Figure 2. 

4.1.5 Parameterization 

Parameterization for Activity Diagrams means that variations provided in an 
Activity Diagram must be enactable by setting parameter values. If a pa-
rameter value can be selected from a set of several possible parameter val-
ues, this corresponds to the realization of a “range variation point” as de-
scribed in [BBG05]. Theoretically, by parameterization variants in the control 
flow, the processed data and the behavior of single Actions of a process can 
be activated. One way for realizing variations in the control flow is to param-
eterize decisionInputBehaviors (DecisionNodes) as shown in Figure 3. In the 
cases depicted here the upper path is only taken if an input object has a 
value that equals to the parameter “Param” (left DecisionNode), smaller (De-
cisionNode in the middle) or bigger than the parameter (DecisionNode on 
the right). 

Figure 3:  Examples for the parameterization of DecisionNodes 

O1 = Param

[true]

[false]

O1 = Param

[true]

[false]

O1 < Param

[true]

[false]

O1 < Param

[true]

[false]

O1 > Param

[true]

[false]

O1 > Param

[true]

[false]  

Alternatively, variations in the control flow can be realized by parameterizing 
the JoinSpecifications of JoinNodes, which is indicated in Figure 4. This al-
lows for the parameterization of the conditions under which a JoinNode will 
issue a token. In this case, the JoinNode will fire once there is a token in Arc 
1 containing an object whose value equals to “Param” or another condition 
comes true which is not expressed here explicitly. Since a JoinSpecification 
is normally not displayed in an Activity Diagram, in Figure 4 it is made visible 
using an UML comment. 
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Figure 4:  Parameterization of JoinSpecifications 

[Parameter_set]

Object in Arc 1 = Param
OR …   x

 

Variations in the control flow can also be realized by assigning guard ex-
pressions to ActivityEdges, whose value depends on the parameter value, 
which is illustrated in Figure 5. A token entering the DecisionNode will take 
the upper branch in case the Variable “Parameter_set” contains the value 
“true” and the lower branch if it contains the value “false”. 

Figure 5:  Parameterization of ActivityEdges using parameterized guards 
[Parameter_set AND
Expression]

[Parameter_not_set AND
Expression]  

Actions can be parameterized using ValuePins. Thus it is possible to param-
eterize entire processes, which are invoked by the parameterized Action in 
case the parameterized Action is a CallBehaviorAction. This is illustrated in 
Figure 6. 

Figure 6:  Parameterization of Actions using ValuePins 

Action

Parameter

 

The data forwarded between two Actions is parameterizable by applying Pa-
rameterSets and ValuePins. In the example in Figure 7 there can be two al-
ternative data flows between “Action 1” and “Action 2”. Object “Ox” will be 
forwarded if “Parameter” has a certain value and “Oy” if it has another value. 
How “Action 1” realizes that a token is issued via one or the other Parame-
terSet in dependence of its configuration is transparent at this level of ab-
straction and can be specified by a separate Activity invoked by the Action. 

16 



 

Figure 7:  Example for parameterizing the data flow between two Actions 
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4.1.6 Variability in Data Types 

On a process model level the utilization of templates is reflected in variations 
of the data types passed between the Actions processing them. Also the 
control flow may depend on the type of data being forwarded. The depend-
ency of the type of data an atomic Action performs its calculations can also 
be depicted. Data storages represented in the process may contain different 
types of data subject to their configuration. The difference between the vari-
ability mechanisms parameterization and templates is that using parameteri-
zation the data values in an Activity Diagram can be configured as described 
in 4.1.5, while using templates the respective data types can be adapted to 
the needs of a certain process variant. Thus, the same elements being sub-
ject to parameterization can also be subject to type change. Additionally, the 
type of an ObjectNode can be changed, as well as the types of Pins, Activ-
ityParameterNodes and CentralBufferNodes. 

4.2 Composite Variability Mechanisms 

4.2.1 Inheritance 

According to the Activity Diagram Inheritance definition in [ScP05], a subac-
tivity  inherits from its superactivity  according to the following 
schema: 

CA PA
CAPACA ∆⊕= . CA∆  comprises elements that shall be newly 

added or that are already present in  and shall be overwritten.  desig-
nates the combination of  with 

PA ⊕
PA CA∆  that adds the new elements and re-

places existing ones which are subject to modification. These transforma-
tions being feasible during the derivation of subactivities using Activity Dia-
gram Inheritance are shown in Figure 8 and Figure 9. Simple Activity Dia-
gram elements can be replaced by simple Activity Diagram elements or sub-
processes. Likewise, Activity Diagram subprocesses can be replaced by 
simple elements or subprocesses. Some basic rules for the addition and re-
placement of encapsulated subprocesses are described in 4.1.2 and 4.1.3. 
Also simple Activity Diagram elements as well as subprocesses can be 
added during derivation. The respective transformations described in 
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[ScP05] also guarantee syntactical and structural correctness for the derived 
Activity Diagrams. 

Figure 8:  Activity Diagram inheritance replacement transformations 
replaces Simple Element Subprocess 

Simple Element X X 
Subprocess X X 

 
Figure 9:  Activity Diagram inheritance addition transformations 

is added  
Simple Element X 

Subprocess X 

4.2.2 Design Patterns 

Here we will concentrate on the “Strategy Pattern” as one of the Design Pat-
terns referenced most frequently in the context of Process Family Engineer-
ing (PFE). In Activity Diagrams the “Strategy Pattern” is realized by employ-
ing a Strategy-Action that contains a Null-Action and provides an invariant 
interface using information hiding. Utilizing Activity Diagram Inheritance dif-
ferent variants of the Strategy-Action can be derived by applying the re-
quired Activity Diagram Inheritance transformations on the Null-Action con-
tained in the Strategy-Action. The strategy pattern is illustrated in Figure 10. 

Figure 10:  Strategy pattern for Activity Diagrams 

I(C)Out I(S)InContext Strategy

Concrete
StrategyA

Concrete
StrategyB

I(S)Out

I(S)In

I(S)In

I(S)Out

I(S)Out

Null
Activity

I(S)OutI(S)In

Strategy
Parameter?

 

4.2.3 Extensions/Extension Points 

In Activity Diagrams extension points can be realized using a CallBehavio-
rAction that invokes either a Null-Activity or an Activity containing an extend-
ing subprocess, which is shown in Figure 12. The Null-Activity performs no 
processing and has the same interface as the Action invoking the subproc-
ess to be omitted. The structure of a Null-Activity is displayed in Figure 11. In 
case an input object is expected to be doubled by subsequent Actions as 
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this is the case for object of type OA, a ForkNode performs the duplication. If 
an object is not required in the subsequent process any more, it is discarded 
by the Null-Activity. This is shown exemplarily for the object OA. Alternatively, 
objects can also be forwarded without any modification, which is shown for 
object OD. Apart from a Null-Activity implementation the variability mecha-
nism information hiding is required for providing Null-Activities. 

Figure 11:  Structure of Null-Activity 

Null

Create
Object Type B

Create
Object Type B

Type OC

Type OA

Type OA

Type OA

Type OB

Type ODType OD

 

The CallBehaviorAction invoking the extending subprocess uses information 
hiding for encapsulating the possible extensions. Alternatively the Strategy 
Pattern (see 4.2.2) can be used for realizing extensions in Activity Diagrams. 

Figure 12:  Extensions in Activity Diagrams using CallBehaviorActions and a Null-Activity 

Arbitrary AD
Subnet

Arbitrary AD
Subnet

Arbitrary AD
Subnet

Arbitrary AD
Subnet

Act
<<ExtensionPoint>>

Act
<<ExtensionPoint>>

NullNull Act-E1Act-E1
 

Activity Diagrams can also be extended by aggregation or delegation. Dele-
gation can be realized in Activity Diagrams by invoking external Activities 
synchronously or asynchronously using SendSignalActions possibly proc-
essing return values of the invoked Activities. The synchronous invocation of 
an external Activity is shown in Figure 13. The external Activity is invoked 
and the processing proceeds with “Act2” only after the delegating Activity 
has received the return value. 
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Figure 13:  Synchronous invocation of an external Activity 
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In contrast to the synchronous invocation of external Activities the process-
ing can continue right away after the external Activity has been invoked. The 
asynchronous invocation of an external Activity without subsequently proc-
essing a return value is shown in Figure 14. 

Figure 14:  Asynchronous invocation of an external Activity without receipt of a return value 
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Delegating Activity

Rec.
Invoc.
Rec.

Invoc.

Invoked Activity

Act1 Act2

 

Figure 15 illustrates how the asynchronous invocation of an external Activity 
and the subsequent processing of a return value can be modeled. The dele-
gating Activity invokes the external Activity. After the invocation the delegat-
ing Activity in parallel waits for the return value and continues with arbitrary 
processing. These two parallel flows are joined once the delegating Activity 
requires the return value for subsequent calculations. In this case at the lat-
est Act2 requires the return value of the invocation. 
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Figure 15:  Asynchronous invocation of an external Activity without receipt of a return value 
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Optional delegation of functionality to Activities and optional aggregation of 
Activities can be realized using the variability mechanisms extensions or the 
variability mechanism adding Actions. 

4.3 Notation for Variability Mechanisms in Activity Diagrams 

After having described a set of variability mechanisms for Activity Diagrams, 
a notation is required for relating the variation points within an Activity Dia-
gram to the corresponding variants and the variability mechanism to apply 
for binding the variants to their variation points. Moreover, the product fea-
tures have to be linked to the corresponding variants in order to be able to 
resolve the variability within the variant-rich process model according to the 
product features to be regarded by the resulting process model. 

In order to highlight product line specific variability in UML Activity Diagrams 
and to separate this kind of variability from non product line specific variabil-
ity, the variation points will be marked using the stereotype <<VarPoint>>. 
Additionally, they dispose of a tagged value with the key “id” that assigns 
them a unique variation point identification number. The variants belonging 
to a variation point are included into the Activity Diagram by connecting them 
to the respective variation point using UML Dependencies as suggested by 
[Cla01] for generic variability types. A stereotype added to the Dependency 
relation indicates the variability mechanism to use for binding the variant to 
the variation point. The variants have a stereotype that links them to the re-
spective feature, an approach also suggested in [RBS00]. An example for 
the notation of variability in Activity Diagrams is shown in Figure 17. In this 
case “Action 1” is the variant which can be bound to the variation point rep-
resented by a Null-Activity. For binding “Action 1” to the variation point the 
variability mechanism “Extensions” is used. This is indicated by the 
respective stereotype assigned to the Dependency relation, connecting the 
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variation point with the variant. Figure 16 lists the stereotypes to be assigned 
to the Dependency relation for any variability mechanism. 

Figure 16:  Stereotypes for identification of variability mechanisms in UML diagrams 
 

Variability Mechanism Stereotype 

Information Hiding <<Implementation>> 

Addition of Components <<Addition>> 

Replacement of  
Components <<Replacement>> 

Omission of Components <<Omission>> 

Parameterization <<Parameterization>> 

Inheritance <<Inheritance>> 

Strategy Pattern <<StrategyPattern>> 

Extension/Extension Points <<Extension>> 

 

“Action 1” is used to implement “Feature 1” as suggested by its stereotype. 

Figure 17:  Example for notation of variability in Activity Diagrams 
 

Null
<<VarPoint>>

{id=1}

Action 1
<<Feature 1>>

<<Extension>>

 

All in all, for the integration of variability mechanisms in UML diagrams only 
lightweight UML extension mechanisms will be applied in order to be inte-
grateable with small effort into existing UML tools. 
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4.4 Example 

This section gives an example for the configuration of an extract of a motor 
control unit process family. The FODA [CoN98] feature model in Figure 18 
shows that the motor control unit can optionally check an immobilizer and be 
responsible for the control of the additional equipment components air condi-
tion and icebox. For the sake of simplicity it shall here be assumed that the 
motor control unit is either capable of controlling an icebox or an air condi-
tion. 

Figure 18:  Feature model for motor control unit 
Motor Control Unit

Immobilizer

Air Condition Icebox

Equipment
Components

 

4.4.1 Equipment Components 

Figure 19 shows the high-level motor control process family. The process 
has three variation points: “start motor”, “controlled termination of proc-
esses”, and the ValuePin “Param_ExtLoads” of the “motor is running” Action. 
However, only the “Param_ExtLoads” variation point is bound at this level 
using the variability mechanism parameterization. Depending on whether the 
derived process shall handle an optional icebox and air condition a respec-
tive value is set for the ValuPin “ExtLoads”. The default value is “none”. 
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Figure 19:  Motor control unit high-level process 
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The impact of the configuration on the process is depicted in Figure 20 and 
Figure 21. Figure 20 shows that the data passed between “monitoring of 
loads” and “calculation overall load” in Activity “Motor running” depends on 
its configuration as well as the optional control of the two equipment compo-
nents (“air condition control” and “icebox control”). The three parameter sets 
serving as output of “monitoring of loads” and “calculation of overall load” re-
alize the variation of the data flow. The required torque is always forwarded 
to “calculation overall load”, while the air condition load and icebox load are 
optional. 
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Figure 20:  “Motor running” subprocess 
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Figure 21 shows the Activity “Monitoring of loads” in detail. Depending on 
the assignment of the “ExtLoads” ValuePin the “air condition load” and “ice-
box load” optionally need to be retrieved in addition to the requested torque 
depending on the handling of the car by the driver. 

Figure 21:  “Monitoring of loads” subprocess 
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4.4.2 Immobilizer 

In order to include the processes required for the handling of an immobilizer, 
the Actions “start motor” and “controlled termination of processes” shown in 
Figure 22 need to be configured correspondingly. For the optional reactiva-
tion of the immobilizer during the shutdown of the motor control unit in “con-
trolled termination of processes”, the variability mechanism extensions is 
applied. 

Figure 22:  Subprocesses with variability depending on the presence of an immobilizer 
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For retrieving the appropriate variant of the “start motor” subprocess the 
variability mechanism Activity Diagram Inheritance can be applied using the 
transformation rules shown in Figure 23. 
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Figure 23:  Activity Diagram Inheritance substitutions applied in Figure 22 
 

*
1Act

1)(InO 1)(OutO

nInO )( mOutO )(

*
mAct

1)(InO 1)(OutO

nInO )( mOutO )(

1)(InOF

nInOF )(

1
1*)(InOF

nInOF 1*)(

1
*)( mInOF

n
mInOF *)(

nOutOF 1*)(

1
*)( mOutOF

1
1*)(OutOF

n
mOutOF *)(

1)(OutOF

mOutOF )(

1FN

nFN

1JN

mJN

Act
1)(InO 1)(OutO

nInO )( mOutO )(

1)(InOF

nInOF )(
1)(OutOF

mOutOF )(

*Act
1)(InO 1)(OutO

nInO )( mOutO )(

1)(InOF

nInOF )(
1)(OutOF

mOutOF )(

1DN

mDN

ItOutOF 1)(

It
mOutOF )(

1MN

nMN

Act
1)(InO 1)(OutO

nInO )( mOutO )(

1)(InOF

nInOF )(
1)(OutOF

mOutOF )(

*
1Act

1)(InO 1)(OutO

nInO )( mOutO )(

*
mAct

1)(InO 1)(OutO

nInO )( mOutO )(

1)(InOF

nInOF )(

1
1*)(InOF

nInOF 1*)(

1
*)( mInOF

n
mInOF *)(

nOutOF 1*)(

1
*)( mOutOF

1
1*)(OutOF

n
mOutOF *)(

1)(OutOF

mOutOF )(

1FN

nFN

1JN

mJN

Act
1)(InO 1)(OutO

nInO )( mOutO )(

1)(InOF

nInOF )(
1)(OutOF

mOutOF )(

*Act
1)(InO 1)(OutO

nInO )( mOutO )(

1)(InOF

nInOF )(
1)(OutOF

mOutOF )(

1DN

mDN

ItOutOF 1)(

It
mOutOF )(

1MN

nMN

Act
1)(InO 1)(OutO

nInO )( mOutO )(

1)(InOF

nInOF )(
1)(OutOF

mOutOF )(

 

27 



 

5 Variability Mechanisms for UML State Machines 

This section analyzes the representation of the variability mechanisms de-
scribed in 3 for generic processes in UML State Machines. 

Since UML Activities can be referenced in various parts of an UML State 
Machine, the application of the variability mechanisms on the Activity repre-
sentation in State Machines has to be discussed as well. 

5.1 Basic Variability Mechanisms 

5.1.1 Encapsulation of Varying Subprocesses 

In State Machines subprocesses can be encapsulated either in Activities 
(using CallBehaviorActions) or States (using composite or submachine 
states). Subprocesses encapsulated in states can best be modeled using 
submachine states for which varying submachine implementations compliant 
to the submachine state interface can be inserted. The interface of a subma-
chine state consists of entry and exit states. Additionally, the submachine 
state may dispose of arcs meeting in and running out of the state’s edge. 
However, arcs meeting in or running out of the state’s edge can be ne-
glected since they only lead over to the default starting point of the subma-
chine and are activated if one of the final states of the state machine is 
reached respectively. On the other hand, deferrableTriggers and information 
from which state a state has been derived are part of the interface of the 
state. 

Figure 24:  Encapsulation of varying subprocesses in State Machines 
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5.1.2 Addition, Replacement, Omission of Encapsulated Subprocesses 

In State Machines encapsulated subprocesses are represented as subma-
chine states referencing a submachine which contains the encapsulated 
subprocess. Now encapsulated subprocesses can be added, replaced or 
removed from a State Machine by adding, replacing, or removing the respec-
tive submachine states, which contain the subprocess to be added, replaced 
or omitted. The rules for adding, replacing and omitting encapsulated sub-
processes still have to be investigated in detail. Generally speaking, if an 
encapsulated subprocess shall be replaced by an encapsulated subprocess 
with a compatible interface, this corresponds to the case described in 5.1.1. 
Else, if the interface of the replacing subprocess is incompatible, the ques-
tion rises how the transitions formerly connected to the replaced subprocess 
shall be connected to the replacing subprocess. If a submachine state is 
added, according to which rules can it be connected to the remaining proc-
ess? If a submachine state is omitted, what happens to the adjunctive transi-
tions and their related Activities? Shall the incoming and outgoing transitions 
be merged? According to which rules? Or shall they be omitted? But this 
may lead to a disjointed State Machine. The problems occurring during the 
omission of a subprocess could be avoided by replacing the submachine to 
be omitted by a “Null Submachine”. 

5.1.3 Parameterization 

The control flow of State Machines can be parameterized using guards. This 
can lead to the selection of an outgoing arc at static choice points repre-
sented by a junction pseudo state. Here, the routing decision doesn’t depend 
on the calculation results of a previously executed Activity. In dynamic 
choice points, on the other hand, the calculation results of the preceding Ac-
tivity are evaluated before the routing decision is made. These two possibili-
ties are depicted in Figure 25. Since incoming and outgoing transitions of 
fork and join nodes are not allowed to have guards, optional parallel calcula-
tions can only be activated and deactivated by enclosing an optional paral-
lely executable subprocess by choice and merge pseudo states, whose 
transitions can be parameterized in order to activate or deactivate the op-
tional subprocess. This is shown in Figure 26. Concerning the dataflow, it 
isn’t represented explicitly in State Machines. 

The output of an Activity in a State Machine can be adapted by changing the 
input parameters of the Activity. Optional Activities carried out during a tran-
sition can be activated/deactivated by adding respective guards to their tran-
sitions. According to [Gom05] also entry-, exit- and do-Activities can be acti-
vated/deactivated by means of guards. 

29 



 

Figure 25:  Parameterization of decisions in State Machines 
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Figure 26:  Activitation/deactiviation of optional parallel processing through parameterization 
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5.1.4 Variability in Data Types 

In State Machines data types can only be represented as the type of input 
and output data of an Activity. Theoretically, also in guard-conditions data 
types can be evaluated.  

5.2 Composite Variability Mechanisms 

5.2.1 Inheritance 

According to [BHK04] the UML specification provides an inheritance mecha-
nism for the derivation of specialized State Machines. While deriving special-
ized State Machines, simple states can be replaced by decomposed states 
and orthogonal or decomposed states can be expanded by regions. New 
transitions and substates can be introduced into an orthogonal state. The 
submachine implemented by a submachine state can be changed. The new 
submachine has to have at least the same number of entry- and exit-points 
as the replaced submachine. Moreover, a transition may be replaced by an-
other transition. The new transition disposes of the same initial state and the 
same triggers as the replaced transition. Final state, Actions and constraints 
optionally connected to the transition have to be defined anew.  
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5.2.2 Design Patterns 

Design Patterns using encapsulation and inheritance can also be repre-
sented in State Machines. The strategy pattern can be represented in State 
Machines for example using a submachine state referencing an empty sub-
machine. From this empty submachine different variants can be derived by 
means of State Machine inheritance and inserted instead of the empty sub-
machine. On Activities contained in the State Machine Diagram design pat-
terns can be applied as described in 4.2.2. 

5.2.3 Extensions/Extension Points 

Similar to Extensions and Extension Points in Activity Diagrams also in State 
Machines Extensions can be realized by means of subprocess interfaces for 
which implementing subprocesses containing the extending subprocess can 
optionally be inserted. The Extensions/Extension Points variability mecha-
nism as defined for Activity Diagrams can also be applied on the Activi-
ties/Actions occurring in the State Machine. 

Figure 27:  Representation of extensions/extension points in State Machines 
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5.3 Notation for Variability Mechanisms in State Machines 

For linking variations to their respective variation points in a State Machine, 
for describing by means of which variability mechanism the variants are in-
tegrated into the process and for assigning the variants to the product fea-
ture they realize, the same lightweight UML extensions can be used as for 
Activity Diagrams. 
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5.4 Example 

In this section we give an example for the application of different variability 
mechanisms for UML State Machines on the basis of the motor control unit 
process described in [RSW04]. 

Figure 29 shows the basic version of the motor control unit process without 
immobilizer. This basic variant encapsulated in the “Stop” submachine state 
can be replaced by a subprocess variant “Stop-Immobilizer”, which regards 
the presence of an immobilizer using the Strategy Pattern. 

Figure 28:  Example for notation of variability in State Machines 
 

 

Just as in Activity Diagrams also in State Machines variation points are high-
lighted using the <<VarPoint>> stereotype having a tagged value “id” con-
taining an unique variation point identifier. Variation points are interlinked 
with their variants using a Dependency relation, which indicates the variabil-
ity mechanism to apply by means of an adjunctive stereotype showing the 
name of the variability mechanism. For identifying a variability mechanism 
the stereotypes from Figure 16 are used. The feature a variant implements is 
indicated by a stereotype holding the feature name. An example for the nota-
tion of variability in State Machines is shown in Figure 28. 
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Figure 29:  Basic motor control unit process and immobilizer variant derived using the Strategy Pattern 
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The variability can also be represented using Parameterization. This is depicted in Figure 30. 
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Figure 30:  Representation of the optional immobilizer using parameterization 

 

 



 

 

6 Variability Mechanisms for BPMN 

This section analyzes the representation of the variability mechanisms intro-
duced in chapter 4 in the Business Process Modeling Notation (BPMN). 

6.1 Preliminaries 

The BPMN places processes inside Business Process Diagrams (BPD). A 
so-called variant rich business process diagram needs to contain three addi-
tions to standard business process diagrams. The first addition is a marking 
of the places where variability occurs. Second, the possible resolutions 
should be shown in the diagram. Third, the variability mechanism used to 
derive the resolution should be shown. 

The first requirement, the identification of variation points, can be adapted by 
the use of annotations in BPMN. However, this approach has some draw-
backs. An annotation marking a variation point cannot be distinguished from 
other annotations in the diagram. Furthermore, the representation of variabil-
ity in the process models would differ from UML activity diagrams and State 
Machines, whereas the notations are otherwise more or less congruent. To 
overcome these limitations, we propose to adapt the concept of a stereotype 
from the UML2 specification to BPMN. Each activity, association, and artifact 
can have a stereotype attached. The name of the stereotype is written in 
italic letters, placed between two angle brackets at each side. It is recom-
mended to place the stereotype above the name of the object if used within 
an activity or artifact, or beside the association. In sub-processes, the 
stereotype can be placed before the name of the sub-process. For the pur-
poses of a variant rich business process diagram, the introduction of a 
stereotype called <<VarPoint>> is sufficient. This stereotype can also be ex-
pressed graphically as a puzzle-piece like marker at the bottom of an activ-
ity. However, if the graphical representation is used, the textual notation has 
to be omitted.  

Furthermore, each variation point is only marked at the level of detail in the 
diagram where it actually occurs. Those, if a sub-process contains variation 
points, but is not itself a variation point, it is not marked. The variation points 
are then only contained in the expanded view. 

For an easier understanding of a variant rich business process diagram and 
the variability mechanisms used, the stereotype variant can be refined with 
tagged values, as defined according to the UML2 specification. A tagged 
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value can be written below a stereotype in curly brackets by using the key-
word type: {tag=value}. Each stereotype can have two predefined tagged 
values, feature and type. The feature tag represents the feature the variant 
belongs to, whereas the type tag further indicates which kind of variability is 
used. The values of the type tag can be optional, abstract, null, and default. 
Their semantics will be explained later on.  

To save screen as well as paper space, the four types of the stereotype 
<<VarPoint>> , which are represented as tagged values, can also be repre-
sented as own stereotypes, thereby specializing <<VarPoint>>. The corre-
sponding stereotypes are <<Optional>>, <<Abstract>>, <Null>>, and <<De-
fault>>. Furthermore, the tagged values of a stereotype can be omitted in 
the graphical representation. 

Possible resolutions to a variation point are either contained in the graphical 
representation of the variation point itself, thereby representing the default 
behavior, as well as by using associations from the variation point to activi-
ties or artifacts which are marked as variant. 

6.2 Basic Variability Mechanisms 

Encapsulation of sub-processes. A BPMN sub-process can hide alterna-
tive variant sub-processes behind an invariant interface. Thereby, an inter-
face is defined as the set of input and output events of an activity. The inter-
face activity is marked with the stereotype <<Abstract>>. Possible realiza-
tions of the interface are connected using associations marked with <<Im-
plementation>>. 

Figure 31: BPMN interfaces 

 
Figure 31 shows the representation of different BPMN interfaces. While it is 
possible to have more then one incoming or outgoing sequence flow from a 
sub-process, only one start and end event is required. Multiple incoming se-
quence flows are and-joined, whereas multiple outgoing flows are and-
splited. It is possible to model exceptional as well as several kinds of inter-
mediate events at the edges. However, they do not directly connect to the in-
ternal sequence flow and act only as a visual representation for the outer 
connection of different flows. 
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Figure 32: Alternative behavior by encapsulation 

 
Figure 32 shows how the encapsulation of a sub-process can be used to 
model alternative behavior. The alternative behavior can occur at a task 
marked with the <<Abstract>> stereotype as well as the name of the varia-
tion point, which is “Payment” in the figure. Possible implementations are 
shown as separate sub-processes, either collapsed or expanded. If there ex-
ists a default implementation, it can be marked with the stereotype <<De-
fault>>, like the sub-process “Credit Card Payment” in the figure. A directed 
association ranging from the implementation sub-process to the variation 
point marks the sub-process as a possible resolution to the variation point. 
The associations have to be marked with the stereotype <Implementation>>. 
Note the use of the graphical symbol to represent the stereotype <<Var-
Point>> at the bottom of the sub-process “Credit Card and Invoice Payment”. 

Parameterization. Each BPMN attribute can be parameterized to support 
optional, alternative, or range variation points. For a graphical representa-
tion, the attribute is written beside the element and surrounded with a group-
ing box. If the connection between the attribute and the element can be mis-
interpreted, an association should be used. Associations are also used to 
link variant data objects that contain the possible parameters to the grouping 
box that surrounds the attribute. The association is marked with the stereo-
type <<Parameterization>>. 

Figure 33: Range/Value/Expression Parameterization 

 
Figure 33 shows the parameterization of two different attributes. The upper 
one parameterizes the ConditionExpression attribute of a sequence flow. 
The default value is a guard that activates the sequence flow if the sales are 
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greater then €15.000. An alternative parameterization changes the attribute 
to activate the sequence flow if the sales are greater then €50.000. The 
lower one offers an alternative for the TimeDate attribute of the intermediate 
timer event. The default behavior triggers the event at the end of each year, 
whereas the alternative behavior triggers the event at the end of each quar-
ter. 

6.3 Composite Variability Mechanisms 

Inheritance. Inheritance modifies an existing (default) sub-process by add-
ing or removing elements regarding to specific rules. This allows for realizing 
alternative variation points. An association represents inheritance from the 
child activity to the parent activity when it is marked with the stereotype 
<<Inheritance>>. 

Figure 34: Alternative behavior by inheritance (collapsed example) 

 
Figure 34 shows alternative behavior by the use of inheritance. The default 
sub-process is shown at the top of the figure, placed between the sequence 
flows. It is marked with the <<VarPoint>> stereotype. Optionally, the <<De-
fault>> stereotype could be used, but the placement of the sub-process be-
tween sequence flows already marks the default status. The alternative is 
realized by inheritance, which is indicated by the <<Inheritance>> stereotype 
at the association between the two sub-processes. The specialized sub-
process “Credit Card and Invoice Payment” belongs to the feature “Invoice” 
as annotated with the tagged value “feature”. The stereotype <<VarPoint>> 
is shown as a graphical marker (the puzzle piece like symbol at the bottom 
of the sub-process).  
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Figure 35: Alternative behavior by inheritance (expanded example) 

 
Figure 35 shows the expanded sub-processes of Figure 34. It can be seen 
that the task “Handle Credit Card” is re-used in the specialization “Credit 
Card and Invoice Payment”. However, there are currently no rules of how to 
derive a correct specialization regarding to formal criteria. 

Extension Points. Extension points use a combination of encapsulation and 
“null sub-processes” to realize optional variation points. An extension point 
activity is marked with the stereotype <<Null>. Associations marked with 
<<Extension>> connect optional implementations. If there is only one op-
tional variant, it can be shown instead of the null activity, marked with a 
<<Optional>> stereotype. 

Figure 36: Optional behavior by Null activities 

 
Figure 36 uses extension points to realize optional behavior. The optional 
extension point “Quality Check” is marked with the <<Null>> stereotype. 
Possible resolutions are attached with associations labeled with an <<Ex-
tension>> stereotype. Figure 36 contains one optional resolution of the 
variation point, called “Test Painting”. 
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Figure 37: Simple optional behavior 

 

 
 

 
If there is only one optional resolution of a variation point, it can be marked 
with the stereotype <<Optional>> and directly placed between the sequence 
flows, without the use of a <<Null>> task (Figure 37). 

 
Design Patterns. The concepts of encapsulation and inheritance can be 
used to implement design patterns that describe variability. There are no ad-
ditional graphical notations required; the patterns can be formed by the use 
of the above mentioned concepts. 

Figure 38: Alternative behavior by encapsulation and inheritance 

 
Figure 38 implements the strategy design pattern. It is derived from Figure 
32 with an additional inheritance relation between “Credit Card and Invoice 
Payment” and “Credit Card Payment”. 

6.4 Example 

This section gives an example for the application of different variability 
mechanisms for business process diagrams. The example extends the e-
business shop introduced in the PESOA technical report 8, appendix A 
[Puh04] by directly expressing the variability resulting from the features of 
the e-business shop. 
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Figure 39: High-level processes of the e-business shop example 

 
Figure 39 contains the variant rich high-level workflow of the e-business 
shop. The variant elements, which have been marked with color in [Puh04] 
have been realized by different variability mechanisms. The Customer’s pool 
contains the optional behavior “InvoiceCustomer”, which is represented by a 
null activity. If the feature invoice is selected, the sub-process “Customer In-
voice Payment” is included at the extension point. Note that the original 
model of the variant covered a gateway as well; this has been placed inside 
the sub-process. The Shop’s pool has the optional task “Load Shopping 
Cart” which is included if the feature “persistent shopping cart” is selected. 
The null activity “InvoiceShop” is filled with “Shop Invoice Payment” if the in-
voice feature is selected. The task “Shop Invoice Payment” corresponds to 
the “Customer Invoice Payment”. As both variation points are enabled by the 
same feature, their realizations always appear together. 

Figure 40: Expanded sub-process “Customer Invoice Payment” 
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Figure 40 contains the expanded sub-process “Customer Invoice Payment”. 
The decision if the payment includes an invoice is evaluated inside the sub-
process as it is also part of the variation point. 

Figure 41: Expanded sub-process “Shop Invoice Payment” 

 
Figure 41 contains the expanded sub-process “Shop Invoice Payment”, 
which equals Figure 40 as a counterpart for the Customer. 

Figure 42: Expanded sub-process “Deliver Product Information” 

 
Figure 42 contains the expanded sub-process “Deliver Product Information”. 
It also uses the <<Optional>> stereotypes to mark “Retrieve Pictures” and 
“Retrieve Reviews” as variation points with one possible resolution. 
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Figure 43: Expanded sub-process “Compose Shopping Cart” 

 
Figure 43 contains the expanded sub-process “Compose Shopping Cart”. It 
utilizes inheritance to modify the default behavior by inserting an additional 
task “Save Shopping Cart” after the reconfiguration of the shopping cart has 
taken place. 

Figure 44: Expanded sub-process “Checkout” 

 
Figure 44 expands the sub-process “Checkout”. It uses the concept of de-
sign patterns to describe the possible resolutions to the alternative variation 
point “CalculateSum”. The first resolution implements the default behavior, it 
only calculates the sum. The second, alternative resolution specializes the 
default one by using inheritance to add the additional calculation of a dis-
count. The percentage of the discount is parameterized with a default value 
of 3 The task “Debit Credit Card” has also an alternative implementation de-
rived by the use of inheritance.  

 

43 



 

7 Modeling Variability in Matlab/Simulink 

The automotive domain is characterized by a variety of product variants 
based on electronic systems. This is only enabled through an increasing us-
age of embedded software [3]. Significant here are concepts for variant con-
figuration of the embedded software. This comprises  

• concepts for modeling variability in architecture models or directly in 
the source code, and  

• concepts for the management and the explicit presentation of variabil-
ity (e.g., using feature models).  

Only the integration of both concepts enables a (partial) automation of the 
configuration process, i.e., resolving variability in order to be able to instanti-
ate valid product variants. 

Due to the increasing influence of model-based development of automotive 
embedded software, concepts for modeling variability in software architec-
ture models have become of particular interest. An important exponent for 
model-based software development is Matlab/Simulink [2]. Modeling a soft-
ware architecture that contains the variability of all product variants leads to 
a generic architecture model in Matlab/Simulink. By means of the configura-
tion knowledge, the model of a concrete product variant can be extracted 
from both the management of variability within the feature model and the ge-
neric architecture model. Afterwards, source code can be (auto-)generated 
out of the model of a concrete product variant using Matlab. 

Our proceeding is geared towards the generative domain model [1]. This 
model separates application-oriented concepts within the feature model from 
implementation concepts – in our case the architecture models. Features of 
the domain of interest are managed and structured in a hierarchy within the 
feature model. The feature model itself contains common and variable fea-
tures1 and their dependencies. For our implementation, we have modeled 
the feature model outside Matlab/Simulink [4]. 

The following aspects are considered when mapping features out of the fea-
ture model on variability within the generic architecture model: 

• Concepts for identifying variability within the generic architecture 
model of the software (variation points) 

                                                 
1 Although not necessary in our contect, we regard common features as part of the feature model, too, in 

order to include all features of the product family.  
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• Concepts for modeling variants (assigning variants to variation points) 

This chapter describes alternatives for implementing these concepts in ge-
neric Simulink architecture models. These concepts are the basis for a (par-
tial) automation of variant configuration in the scope of model-based devel-
opment of embedded software with Matlab/Simulink. 

7.1 Concepts for Modeling Variants 

Basically, Matlab/Simulink provides two concepts for modeling variants in 
architecture models: 

• Substitution of whole Simulink blocks regarding the occurrence of (lo-
cal) variability in the context of configurable subsystem blocks – 
comparable to the variability mechanism Inheritance. 

• Application of (block) parameters – comparable to the variability 
mechanism Parameterization 

Both concepts are intrinsic to Matlab/Simulink. In the following, both con-
cepts are explained by means of examples. In particular, we will dwell on the 
mapping of feature types out of the feature model [1] on concepts for model-
ing variants in Simulink. 

7.1.1 Configurable Subsystem Blocks  

A concept for describing variability includes the selection of alternative block 
variants. These block variants are added to a library and assigned as a 
member to a template block, the configurable subsystem block. Template 
blocks enable selection of a variant from different alternatives in the generic 
model. Now parts of the model can be designed to be exchangeable. Yet, it 
is not necessary for exchangeable blocks to have the same in- and out-
signals or ports. Unused signals are terminated or grounded from Simulink 
automatically and are not considered during code generation should source 
code optimization become necessary. By using stateflow diagrams in com-
bination with configurable subsystem blocks, specific issues regarding trig-
ger signals have to be taken into account, i.e., handling them as normal in-
port signals. 
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Fig. 45. Example of a Configurable Subsystem Block2

 

The alternative choice can also be employed to model optional variants. 
Admittedly, a default block has to be defined. This block is used, if the op-
tional element is selected. Generally, the default block is modeled as an 
empty block (interrupting, terminating, and grounding signals) or as a block 
that pipes the signals (directly from in-ports to out-ports). If applicable, a 
combination of both may be used. In Figure 45 the template block  
Schlupf_Reduzierung is a variation point. It can be replaced by one of the 
member blocks Antischlupfregelung or Default, representing the optional 
feature Antischlupfregelung. In our figure Antischlupfregelung has been se-
lected (depicted by the black angle around the block) 

Combining configurable subsystem blocks also allows the implementation of 
a multi-choice (or assignment) – although only in a complex form. In this 
case, all signals from all member block combinations have to be available at 
the template block from the start. However, alternatives and options are 
more relevant for modeling variability in data and control flow, represented in 
Simulink. 

7.1.2 Application of (Block) Parameters  

Parameterization is useful for variable scaling in data transformations within 
function blocks. Typically, parameterization is used for linking variant-
specific characteristic curves or scaling of functions. The Simulink block li-
brary itself contains a number of such blocks, which are already parameter-
ized. These blocks can be customized for solving specific problems of a se-
lected application domain. Examples are one- or multidimensional lookup-
table blocks, parameterized by one- or multidimensional arrays. In particular, 
these blocks are commonly employed in combination with characteristic 
curve fields in the engine control unit. Basing on this pattern, developers can 
define any generic parameterizable blocks. 

                                                 
2 The blocks Antischlupfregelung and Default are assigned to the template block as members. When us-

ing configurable subsystem blocks, one of the member blocks can be chosen in the model. 
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Parameters can also be used to specify branching in the control flow (and, 
thus, in stateflow diagrams) statically, i.e., to manage variant-specific 
branching. This is important, as it is not possible to exchange subelements 
such as States, Subcharts, or Transitions in stateflow diagrams on the Simu-
link level. 

With variability in behavior, i.e., within state charts, two options only arise:  

• Exchange the whole chart (embedded in a configurable subsystem-
block) 

• Design a chart that contains all possible variants. Afterwards, this 
chart can be constrained statically for a specific variant using pa-
rameters (figure 46). 

Fig. 46. State Chart with Parameter-based Variability Mechanism

 

7.2 Concepts for Identifying Variability 

Template blocks (configurable subsystem blocks) and parameterized blocks 
(parameterized masked blocks) are variation points and have their implicit or 
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explicit counterparts in the feature model3. In Simulink, these blocks have to 
be flagged in order to indicate this relation.  

Our recommendation here is to add a tag to the block properties of configur-
able subsystem blocks with the notation VariationPoint::Featurename. The 
notation Featurename corresponds to the name of the variation point in the 
feature model. This enables a simple mapping of variability in the feature 
model with the generic Simulink model. Then, model construction commands 
[2] can be employed to pursue and visualize this mapping. It has proven 
useful to add additional information to the tags of variation points – such as 
the mode for realizing variability. This additional information is not manda-
tory, but it facilitates configuring the models. 

For parameterized blocks, our recommendation is to use the tags Variation-
PointIB:: Parametername and VariationPointIW::Parametername. This dif-
ferentiation depicts where parameters are set: directly at the parameterized 
blocks (i.e. VariationPointIB) or in the model’s Matlab workspace (i.e. Varia-
tionPointIW).  

When using configurable subsystem blocks, another convention for describ-
ing alternatives or options is to add a tag to the member blocks with the 
name of the feature that is represented by the member blocks. This could be 
done in the form of Feature::Featurename, where Featurename is the name 
of the feature. 

 

                                                 
3 Not all features of feature diagrams are variation points. Features that are classified as mandatory and 

do not have variable subfeatures do not require a counterpart in the Simulink model. They are only 
modelled for the sake of completeness of the product family.  
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8 Conclusions and Outlook 

In this report we have given an overview of variability mechanisms com-
monly applied in product family engineering, thereby identifying which of 
these variability mechanisms are architecturally relevant and thus should be 
represented in architecture models. 

Next, we have analyzed the transferability of these architecturally relevant 
variability mechanisms on a basic process model and their representation in 
UML Activity Diagrams, UML State Machines, BPMN, and Matlab/Simulink – 
an important exponent for model-based software development in Automotive 
industry. Moreover, we have shown how to depict variation points, process 
variants and variability mechanisms in UML Activity and State Machine dia-
grams using only lightweight UML extension mechanisms; the same is true 
of variability mechanisms in Matlab/Simulink, too. As the BPMN does not 
contain official extension mechanisms, we adopted the lightweight stereo-
type approach from the UML. This representation allows for the integration 
of variant-rich processes into the product family engineering development 
process. 

In the next step of our work we will analyze by means of which techniques 
the variability mechanisms for process models can be realized on the source 
code level. This will allow for their automatic implementation in later phases 
of the software development process, thus allowing for a more model driven 
software development. This is also important for the next PESOA phase.  

Concerning the integration with earlier phases of the software development 
the long-term goal of our research is to categorize the variability mechanism 
for process models according to the relevant non-functional characteristics 
of their modification, like the maintenance of the syntactical correctness of a 
process or the modifiability of the process according to respective metrics 
[ReV04]. The idea is that using the right variability mechanisms the require-
ments of a system, which are realized by a corresponding system design 
[IEE98], can be maintained while deriving process design variants for similar 
software products by means of the suitable variability mechanisms. 

Figure 45 visualizes the above mentioned ideas. The upper ellipse shows 
possible non-functional requirements for software products. Syntactical cor-
rectness is the non-functional requirement relevant for software product A 
and A’, whose process design model shall be derived from the process de-
sign model of software product A. Therefore, syntactical correctness is high-
lighted. The lower ellipse contains various variability mechanisms with differ-
ent non-functional properties they preserve if being used for the derivation of 
process variants. An inheritance mechanism shall, for example, have the 

49 



 

property to be correctness-preserving. Therefore, it is selected to derive a 
process design model for software product A’ from software product A as 
shown in the lowest part of the figure. This is possible, since inheritance 
shall be correctness-preserving and because the process of A shall also be 
– according to the requirements of A – syntactically correct. 

Figure 45:  Requirement driven derivation of process variants by means of appropriate variability mechanisms 
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At first, we will focus on the syntactical correctness as a non-functional re-
quirement which is essential for the design of a process. 
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