

PESOA
Process Family Engineering in Service-Oriented Applications

Process Modeling Techniques

Authors:
Arnd Schnieders
Frank Puhlmann
Mathias Weske

PESOA-Report No. 01/2004
February 6, 2004

 II

PESOA is a cooperative project supported by
the German federal ministry of education and
research (BMBF). Its aim is the design and
prototypical implementation of a process fam-
ily engineering platform and its application in
the areas of e-business and telematics.
The project partners are:

· DaimlerChrysler AG
· Delta Software Technology GmbH
· Fraunhofer IESE
· Hasso-Plattner-Institute
· Intershop Communications GmbH
· University of Leipzig

PESOA is coordinated by
Prof. Dr. Mathias Weske
Prof.-Dr.-Helmert-Str. 2-3
D-14482 Potsdam

www.pesoa.org

http://www.pesoa.org

 1

Table of Contents

1 Introduction 5

2 UML Activity Diagrams 7
2.1 UML Activities 8
2.1.1 Core Elements 8
2.1.2 Execution of Activities 12
2.1.3 Object Flow 13
2.1.4 Storage of Tokens 17
2.1.5 Routing the Control and Object Flow 18
2.1.6 Deviations from the Normal Flow of Control 21
2.1.7 Additional Instruments for Controlling Flows 22
2.1.8 Additional Means for Structuring Activities 27
2.2 UML Actions 29
2.3 Example 30
2.3.1 Place Order Use Case 33
2.4 Conclusion 40

3 Petri Nets 43
3.1 Basic Concepts 44
3.2 Routing Concepts 47
3.3 Triggering of Transitions 50
3.4 Higher Petri Nets 51
3.4.1 Color Extension 52
3.4.2 Time Extension 53
3.4.3 Hierarchical Extension 54
3.5 Example 55
3.6 Conclusion 58

4 Business Process Modeling Notation 59
4.1 Notation 59
4.1.1 Core Elements 60
4.1.2 Events 62
4.1.3 Activities 64
4.1.4 Gateways 67
4.1.5 Sequence and Message Flow 67
4.1.6 Associations 68
4.1.7 Attributes 68
4.2 Example 68
4.3 Mapping to executable languages 72
4.3.1 Mapping BPMN to BPEL4WS 73
4.3.2 BPEL4WS Mapping Example 75

 2

4.4 Conclusion 77

5 Conclusions 79

 3

Abstract

This paper introduces three process modeling languages for representing a
system’s dynamics, which are UML activity diagrams, Petri nets, and the
emerging Business Process Modeling Notation (BPMN). Petri nets already
exist for several decades and still enjoy great popularity among others due
to their precise mathematical semantics and their straightforwardness. Activ-
ity diagrams are part of the UML specification and have changed considera-
bly with UML version 2.0 having become more expressive and providing sig-
nificantly more modeling elements. BPMN is a quite new process modeling
language that aims to be sufficiently abstract and free of technical details in
order to be usable also by business people for modeling their business proc-
esses.

 4

 5

1 Introduction

In today’s dynamic business environments, change is the rule rather than
the exception, both with respect to application level business requirements
and technical requirements, regarding software systems that implement
many functions required by modern organizations. While in general there
might be many reasons for change, new business requirements and modi-
fied organizational and technological environments of a company and its
partners are among the main sources of change requirements. Computer
science in general and software engineering in particular have developed
numerous approaches and techniques to deal with these issues and to en-
hance the flexibility of software systems, ranging from data independence in
database systems to software design and analysis, software component
technology, and object-oriented middleware and associated approaches.

Many of the products and services a company provides are produced by
business processes, for instance processing an insurance claim or process-
ing a credit application. For these types of business processes, workflow
management systems have been developed. Using these systems, business
processes can be modeled, and their execution can be controlled. Typically,
a step in a workflow process is performed by an individual or by invoking an
application. By controlling process executions, business processes can be
performed faster, more reliably and more economically. However, process
technology can also be used to model processes that are executed within
software systems. This is already done in Enterprise Resource Planning
systems where many business processes are pre-defined in the system. To
represent the particular needs of organizations, these processes can be
customized in many ways. These applications of workflow technology in
software systems are called embedded workflow. Just like traditional work-
flow allows to model business processes that are being executed in a con-
trolled fashion, embedded workflow allows to flexibly configuring software
systems. To generalize these considerations, explicit knowledge on the
processes that are executed in software systems is an important goal for the
design and development of complex software systems, since it allows deal-
ing with changes in a flexible way. Once the processes have been specified
explicitly, they can be modified with rather limited effort, since process struc-
tures can be changed graphically and no software code needs to be re-
written to implement the required changes.

In the context of object-oriented design and analysis, process modeling is
often characterized by behavior modeling, and many concepts, methods and
notations have been developed to model the behavior of complex software

 6

systems. In this paper we provide an overview of recent techniques in be-
havior modeling and process modeling. The remainder of this paper is or-
ganized as follows: Section 2 introduces the current version of Activity Dia-
grams that have been developed in the context of the Unified Modeling Lan-
guage. Section 3 discusses Petri nets that have been around since about
forty years and that have been successfully used to model the behavior of
complex systems in many different domains. In Section 4 we take a look at a
more recent development, the Business Process Modeling Notation. This
notation is currently being developed in the context of Web Services and re-
lated software technologies, where process technology is used to create
business processes by composing existing Web Services. Concluding re-
marks and a brief evaluation and comparison of the process modeling tech-
niques complete this paper.

This technical report was prepared during the first phase of the PESOA pro-
ject (Process Family Engineering in Service-Oriented Applications), which is
supported by the German Ministry of Education and Research. The report
provides the basis for process modeling in PESOA.

 7

2 UML Activity Diagrams

In software development decomposing complex problems in a number of
simpler problems – also known as divide and conquer - is an essential prin-
ciple to overcome the complexity of large systems. In object oriented model-
ing at least two different types of decomposition of a given software system
can be done, regarding its structural and behavioral aspects, respectively.

The structural view on a software system points out “what” shall be provided
by the system (e.g. which tasks, activities, etc.) reflecting a system’s un-
changeable aspects. Based on the fundamentals of the object-oriented ap-
proach like classification, the structural view provides for example informa-
tion about inheritance, association, and aggregation relationships between
the participating classes.

The behavioral view on the other hand shows “how” the system acts in order
to fulfill a task. It thus provides information about the dynamic behavior of
the system. There exist various languages for modeling system behavior.
Some of the most popular ones comprise Petri nets, dataflow diagrams,
several types of diagrams developed in the context of the Unified Modeling
Language (UML), as well as formal approaches like, for instance, process
algebras.

From which perspective a system is seen, whether from the static or from
the dynamic point of view, depends on the particular intention of the mod-
eler. In this paper we will focus on the description of the behavior of object
oriented systems.

This chapter will deal with UML 2.0 activity diagrams as specified in [10]. In
comparison to previous versions of the Unified Modeling Language, UML 2.0
activity diagrams have been changed in some major aspects with the aim of
making activity diagrams more expressive and more intuitively manageable.
Previously activity diagrams were a special kind of state diagram, with the
difference that in activity diagrams an operation state changes upon comple-
tion of activity executions, while in state diagrams the state change happens
due to the occurrence of an external event. Nevertheless UML 2.0 activity
diagrams are still capable of modeling reactions to external events.

In UML 2.0 the activity diagram semantics is oriented at the Petri net seman-
tics with activities and actions that produce and consume tokens rather than
on state charts. However, expressed in simple terms, it is not possible to en-
tirely map UML activity diagrams to Petri nets since, while Petri nets model

 8

closed and active systems, which don’t interact with their environment, activ-
ity diagrams may react to events occurring in their environment, as pointed
out in [8]. In UML 2.0 the number of flows that can be modeled by activity
diagrams is widened. It is now possible for example to model concurrent
flows. Also the explicit modeling of control and object flows is new in UML
2.0 and replaces the use of state transitions in previous versions of UML ac-
tivity diagrams [9].

Some of these enhancements of activity diagrams in UML 2.0 have been
reached by integrating the UML activity model with the UML action model.
The UML 2.0 activity and action model will be introduced in the following two
chapters. Section 2.4 will then give a real world example for an e-business
process described by means of a UML activity diagram. Chapter 2.4 is fol-
lowed by a conclusion chapter summarizing the main properties of activity
diagrams as well as their advantages and disadvantages.

2.1 UML Activities

In this section, the main elements of UML Activity Diagrams are discussed,
including core elements, the handling of token and various routing con-
structs.

2.1.1 Core Elements

Generally speaking activity diagrams consider two dimensions of a process:
the flow of data within the process and the flow of control coordinating the
execution sequence of the tasks involved. These two aspects are also re-
ferred to as the control flow model and data flow model, respectively.

 9

Figure 1: Structure diagram for core elements

In order to clarify this, consider the following example. Let us assume that
two tasks have to be carried out within the processing of an order, which are
the delivery of the ordered products and the invoicing. Now the invoicing
shall not be induced before the delivery of the products has been completed,
which has to be made sure by the flow of control within the process. Tasks
are depicted as a round-cornered rectangle and the flow of control between
two tasks is shown as a directed arc. A diagram representing the processing
of an order looks as follows.

Figure 2: Flow of control

The diagram above still lacks from some important information, which is the
flow of data between the two tasks. In fact the invoicing cannot be per-
formed without some information about the products purchased by the cus-
tomer. Since this information must be available to the task responsible for
the delivery of the products the simplest way of providing this information to
the task responsible for invoicing would be to pass it from one task to the
other. Assuming that data handed from one task to another is indicated as a
small square above the control flow arc the diagram displayed above ex-
panded by object flow information would look as displayed in Figure 3.

Send
Invoice

Deliver
Products

Activity

Action

Activity
Node

Activity
Edge

Control
Node

Object
Node

Object
Flow

Control
Flow

 10

Figure 3: Object flow

An activity diagram and its control and data flow are represented by an activ-
ity, which typically contains activity nodes and actions interconnected by ac-
tivity edges. Activity nodes comprise constructs for controlling the data and
control flow, as well as nodes for indicating the presence of objects and data
at certain points in the diagram. While the former nodes are called control
nodes the latter are referred to as object nodes.
Additionally activity diagrams typically contain nodes for performing concrete
calculations on the process’ data. These processing-nodes comprise actions
and behaviors whereas actions represent predefined calculations provided
by UML while behaviors are user-defined.

Activities may be nested, thus being recursively resolvable into sub-
activities, which on their part may consist of sub-activities again, and so on.
Ultimately activities can be resolved into individual actions somehow inter-
linked with each other by means of edges and activity nodes according to
the data and control flow. Actions are atomic insofar as they may not be de-
composed further, but which may nevertheless be responsible for the invo-
cation of other (structured) activities.

An activity may be assigned to a context element, called classifier. In this
case the activity describes the behavior of that element [5]. Activity nodes
and activity edges now are so-called RedefinableElements that can be spe-
cialized and replaced by more specialized elements if they are defined in the
context of a classifier [10]. Specialization means the mechanism by which a
more specialized classifier incorporates structure and behavior of a more
general classifier [10].

Activity edges can be subdivided into control flow edges and object flow
edges. Control flow edges start an activity node after the previous one is fin-
ished by means of the control tokens they carry thus realizing the control
flow within the activity diagram. Object flow edges transport data in the form
of object tokens thereby realizing the data flow within the activity diagram.

Send
Invoice

Deliver
Products

 11

Figure 4: Core elements in activity diagrams

The name of the exemplary activity illustrated above is “ProcessOrder”. It
contains three actions, which deliver the ordered product items to the cus-
tomer (represented by the “ShipOrder” action) and perform the invoicing
(“MakeInvoice” and “SendInvoice” actions). Both the “ShipOrder” and
“MakeInvoice” action and the “MakeInvoice” and “SendInvoice” partitions are
connected through an object flow edge. A control flow edge looks exactly
like an object flow edge with the only difference that the two small squares
at the ends of the edge and the small identifiers close to the squares are
missing. The small squares at the ends of the edges are called pins and will
be introduced later in detail. For now it is only necessary to know that pins
represent placeholders for input and output objects of actions, and that they
may be of different types. Pins may also be omitted in the notation even
though they are actually present in the diagram.

The two black dots close to the “Ship Order” and “Send Invoice” action are
an initial and final node, which indicate the starting point and end point of the
activity.

Altogether there are three alternative notations for an object flow edge
(Figure 5). The first one corresponds to the notation used in the example
above. In the second one the pins are elided and in the third one the object,
which is passed from one action to another is represented as a large rec-
tangle that divides the connecting edge. The latter notation is only allowed if
the pins at the source as well as at the target node are of the same type.

ProcessOrder

Make
Invoice

Send
Invoice

invoice invoiceShip
Order

order order

 12

Figure 5: Notations for object flow edges

2.1.2 Execution of Activities

Tokens control the execution flow of nodes within an activity diagram. To-
kens may contain objects. Additionally they may just be utilized for passing
on the control from one action to another. Tokens carrying objects also carry
control information. An action accepts tokens from its input edges and starts
execution, except where noted, as soon as all of the incoming object flow
edges provide the required input objects and all incoming control edges
have tokens (implicit join). The tokens are then accepted from all of the input
edges and placed on the node. After completion of the execution the control
and object tokens are taken from the node and offered to all of the outgoing
control edges and pins (implicit fork).

In order for a token to be allowed to traverse an edge it has to fulfill the to-
ken flow rules not only for the target node, but also for the source node and
the connecting edge. So even if a source node offers a token, the token may
still be prevented from moving to the target node because of the rejection by
the edge or the target node.

Object flow edges offer various mechanisms for modeling token flow rules.
Tokens that want to traverse an object flow edge can be evaluated by
guards, which describe traversal constraints for tokens and which have to be
evaluated to true for a token to be allowed to traverse the edge. Additionally
weight attributes define the minimal number of tokens, which have to trav-
erse an edge concurrently. As soon as there are sufficient tokens in terms of
the edge weight offered by the source node to the edge all of the tokens at
the source node are offered to the target node at once. In the broader sense
selection behaviors for object flow edges can be considered as a modeling
instrument for token flow rules as well, since a selection behavior may de-
termine in what sequence incoming tokens are allowed to traverse the edge.
In contrast to object flow edges control flow edges forward whatever control
token being offered by the source node, to the target node so they don’t
possess any means for accomplishing token flow rules.

Send
Invoice

Make
Invoice

Make
Invoice

Send
InvoiceInvoice

Make
Invoice

Send
Invoice

Invoice Invoice

 13

Nodes provide some instruments for modeling token flow rules for source
nodes as well as for target nodes. The kinds of restriction mechanisms they
offer depend on the type of node. For actions pre-conditions and post-
conditions may be defined that must hold for an action to begin and to ter-
minate processing. Object nodes may accept only objects of a certain type
and with a certain state. Moreover they may have a limit resulting in the ob-
ject node to reject an object token offered by the incoming edge in case the
limit of the object node is reached. Additionally object nodes can be ordered
according to one of the predefined orders (called object node ordering
kinds) or by means of a selection behavior that defines the order in which
tokens are offered to the outgoing edge. An example for token flow rules for
object nodes is given later in this text. Concerning control nodes only join
nodes may define token flow rules by means of join specifications. These
can be used to define under which conditions tokens are accepted by the in-
coming edges and offered to the outgoing edge. Join nodes will be dis-
cussed in detail later.

We now take a look at the example depicted in Figure 6 that illustrates the
abovementioned modeling instruments weights and guards. Let us assume
that we want to build a new football team. Since a football team always con-
sists of at least eleven football players a respective weight attribute at the
incoming object flow edge of the “FormFootballTeam” action makes sure
that the football team isn’t built as long as there are not at least eleven play-
ers available. The “FormFootballTeam” action and “PlayFootballMatch” ac-
tion are interlinked by another object flow edge. This time the edge disposes
of a guard, which makes sure that the “PlayFootballMatch” action isn’t acti-
vated as long as the date of the match hasn’t been reached.

Figure 6: Weight and guard adornments

2.1.3 Object Flow

Object flow edges are responsible for transferring data to or from object
nodes. They may have an executable node at most at one end. Two object
nodes may also be connected by object flow edges with an intervening con-
trol node. A control node is an element for steering the routing of the data
and control flow and will be described more in detail later.

Football
Player

Play
Football
Match

Form
Football
Team

{weight=11}
[date_of_match_reached]

 14

Figure 7: Structure diagram for object flow elements

The flow of data within an activity diagram can be supported by object
nodes, which indicate the availability of data at a particular point in the dia-
gram. They are typically located at the end of an edge and act as an in-
put/output buffer for an executable node, collecting tokens as they are wait-
ing to be consumed by the node or to traverse the next edge. The data val-
ues of the tokens thereby have to conform to the type of the object node (if
a type is specified, else the contained values may be of any type) and have
to be in the required state (if demanded). An object node may hold tokens
up to the specified limit (in case the object node possesses such a limit).

As mentioned above object nodes are used in particular for buffering the in-
put and output data of executable nodes. Object nodes, which serve as the
input and output buffer of an action are called “pins”, whereas object nodes
assigned to activities are called “activity parameter nodes”. The objects held
by the pins serve as the inputs and outputs of an action being matched to its
input and output parameters.

Figure 8 shows an example for the pin notation. The two small squares at
the “TicketSale” action are pins for data concerning the departure and arrival
of the flight. The ticket sale won’t start until the “Arrival” and “Departure” pin
don’t provide this information to the “TicketSale” action.

Figure 8: Pin notation

InputPin

OutputPin

ValuePin

Object
Node

Pin

Activity
Parameter

Node

TicketSale

Arrival

Departure

 15

In contrast to pins, activity parameter nodes always only dispose of either an
outgoing edge and no incoming edge (input activity parameter node) or an
incoming edge but no outgoing edge (output activity parameter node). The
parameters provided to the activity by an activity parameter node can be ac-
cessed by any action within the activity. An activity only provides tokens on
its outgoing activity parameter nodes as soon as there are no tokens left cir-
culating inside the activity.

Mutually exclusive alternative sets of inputs and outputs a behavior may use
can be modeled using the core elements. Normally several edges entering a
behavior stand for an “and”-condition, which means, that the input data on
all edges has to be available for the behavior to start. Likewise multiple out-
going edges of an activity normally mean that tokens will be placed on any
of the outgoing edges after an activity has terminated. Now using core ele-
ments it is possible to model alternative groups of input and output parame-
ters. For input, when one group or another has a complete set of input flows,
the activity may begin. For output, the group of output flows that may occur
depends on the internal processing of the behavior.

Output parameters of activities may have an additional isException property
controlled by means of a corresponding attribute. Attributes in general are
values, which are available to a node during execution. They are therefore
suitable for adjusting certain properties of a node. The type of attributes a
node possesses depends on the kind of node. If the isException attribute is
set for the output parameter of an activity, this means that all flows within the
activity shall be aborted as soon as a token is issued by the output parame-
ter with the isException attribute set. If the isException attribute is set for an
output parameter of an action the issue of a token by this parameter pre-
vents any other output parameter of the action to emit any further token.

Figure 9 is an adapted example taken from [5] showing the notation of activ-
ity parameter nodes, core elements and the isException attribute notation for
activity parameter nodes and actions. The mentioned elements are illus-
trated on the basis of the payment process for a plane ticket starting with the
reception of an invoice (provided by the “Invoice” incoming activity parame-
ter node) and resulting in the issuing of the corresponding flying ticket (via
the outgoing activity parameter node “Ticket”).

The customer may accomplish the actual payment using his or her credit
card or by means of a bank transfer. Accordingly the processing of the pay-
ment (“Process Payment”) requires either the complete credit card informa-
tion (represented by the objects “Number”, “Name” and “Date”) or a money
order (“MoneyOrder”). The fact that alternatively the complete credit card in-
formation or the money order is required in order to start the process pay-
ment is expressed using core elements. Considering for example the outgo-
ing core elements at the “Make Payment” action one core element com-

 16

prises the credit card information, while the other one holds the money or-
der.

The “ProcessPayment” action disposes of an outgoing pin with the isExcep-
tion attribute set indicated by the small triangle. Thus the “ProcessPayment”
action issues an error whenever an exception occurs during the processing
(e.g. the specified credit card is invalid). In this case the “Payment” activity
will issue an error value instead of a ticket as indicated by the “Error” activity
parameter node with the isException attribute set (again a small triangle
written close to the activity parameter node).

Figure 9: Activity parameter nodes, isException attribute, and core element

Object flow edges can exhibit a so-called token selection behavior. A token
selection behavior can select tokens to be offered to the target node from a
number of incoming tokens according to specified rules.

The diagram in Figure 10 shows an adapted example for an object flow se-
lection behavior taken from [10]. “Fill Order” offers object tokens of type
“Order” in the state “Filled” to the outgoing edge via its outgoing pin. The ob-
jects waiting for traversal are investigated by the edge and the objects are
selected in the order of their priority. If there are two orders with the same
priority the one which arrived first is chosen.

Payment
Invoice: Invoice

Make
PaymentInvoice

Ticket

Error

Number Name Money
OrderDate

Process
Payment

 17

Figure 10: Token selection behavior of an object flow edge

2.1.4 Storage of Tokens

A data store node is a special kind of central buffer node, which is used to
model a central buffer for persistent information. It keeps all of the entering
tokens and makes a copy of them whenever they are supposed to move
downstream. Objects residing in the data store node are overwritten by iden-
tical new ones, which enter the node.

Figure 11: Structure diagram for storage elements

As visible in Figure 12 data store nodes are indicated by the keyword
“datastore”. In this example derived from an example in [10] hired employ-
ees are stored persistently in a data store node. They remain there but can
be retrieved from it by means of a selection behavior. In our case employees
without any duties so far are read from the personnel database as soon as
they shall be assigned with a new task.

Figure 12: Data store node

Object
Node

DataStore
Node

Central
Buffer
Node

<<datastore>>
Personnel
database

Hire
Employee

Assign
Employee

<<selection>>
employee.

assignment = null

<<selection>>
employee.

assignment = null

Fill
Order Order

[Filled]

<<selection>>
FIFO within

Order Priority

<<selection>>
FIFO within

Order Priority

Order
[Filled]

Ship
Order

 18

2.1.5 Routing the Control and Object Flow

The flow of control and data within an activity diagram is modeled with the
aid of control nodes, which serve as kinds of switches in so far as tokens are
not allowed to rest at control nodes. The consequence is that tokens, which
are rejected by the outgoing edge, are discarded instead of being saved for
another attempt. Control nodes comprise fork nodes, join nodes, decision
nodes, merge nodes, initial nodes, and final nodes.

Figure 13: Structure diagram for elements for steering the control and data flow

Parallelism in activities can be modeled using fork and join nodes. Here par-
allel execution of activities doesn’t mean that they must be carried out syn-
chronously but only that they are independent from each other and hence
may also be processes at the same time.

Fork nodes have one incoming edge and multiple outgoing edges. Incoming
tokens are copied and passed to every outgoing edge whose token flow
rules currently allow the acceptance of a control token.

Join nodes are the counterparts of fork nodes, i.e. they have several incom-
ing edges but only one outgoing edge. The so-called join specifications de-
fine according to which rules a join node offers tokens to the outgoing edge.
Therefore it is proved for every incoming edge whether it offers a token. It is
then evaluated on the basis of the token configuration of the incoming
edges, if it conforms to a Boolean value specification representing the join
specification of the join node and that refers to the names of the incoming
edges. The default is that tokens are offered to the outgoing edges as soon
as at least one token is being offered at each incoming edge. Apart from the
already mentioned join specifications possible deviations from this rule may

Initial
Node

Final
Node

Control
Node

Fork
Node

Join
Node

Decision
Node

Merge
Node

Activity
FinalNode

Flow
FinalNode

 19

also result from the characteristics of the outgoing edge and its target. The
outgoing edge for example may meet an object node that has reached its
upper bound and thus rejects any incoming tokens.

As soon as the join specification of the join node is fulfilled tokens are of-
fered on the outgoing edge according to the following join rules: if the incom-
ing tokens are all control token, then one token is offered to the outgoing
edge. If some of the incoming tokens are control tokens while others are
data tokens, then only the data tokens are offered to the outgoing edge.

Figure 14 presents the notation for join and fork nodes based on an exam-
ple modeling a flight. After the passengers have checked in and boarded the
flight starts. During the flight the passengers have a meal and watch a
movie (parallelism of “watch movie” and “eat” actions enabled by the fork
node – the vertical line with one incoming edge and two outgoing edges).
Some time after the passengers have watched the movie and finished their
meal the aircraft lands and the passengers are supposed to unboard.

Figure 14: Fork and join node

Alternative flows within an activity diagram are modeled by means of deci-
sion and merge nodes. Decision nodes are control nodes with only one in-
coming edge and multiple outgoing edges. They are used to determine to
which one of a number of alternative outgoing edges a token shall be of-
fered.

The process of selecting the outgoing edge is performed via guards. A spe-
cial else-guard can be assigned to an edge to which a token is offered in
case no other guard has been evaluated to true. There shall always be only
one traversable edge in the end, since decision nodes do not duplicate to-
kens. Whether the unambiguousness is finally reached through the mutual
exclusiveness of the guard definitions or through a combination of guard de-
cisions and input conditions of the outgoing edges, doesn’t matter. Before
the guards are evaluated a token can be passed to the decision input be-
havior of the node (if specified), which can avoid redundant recalculations of
conditions in guards. Figure 15 will give an example of how such a decision
behavior is modeled.

Board

Watch
Movie

Unboard

Eat

Check In

 20

Merge nodes are the counterparts of decision nodes, as they bring together
multiple flows. There is no joining of tokens and every token, which enters
the merge node through any of the incoming edges, is forwarded to the out-
going edge. Initial and final nodes indicate the start and end of a flow, re-
spectively. Activities are invoked at their initial nodes. Therefore to start an
activity a token is placed at its initial nodes. In contrast to other control
nodes initial nodes save tokens that are not consumed immediately by the
outgoing edge.

There are two types of nodes modeling the end of flows in activity diagrams
both derived from the final node element: the activity final node and the flow
final node. The characteristics of an activity final node is that it terminates all
flows within the activity as soon as it is reached by a token thus providing a
means to model non-local termination of all flows in an activity. Flow final
nodes in contrast terminate flows by destroying arriving tokens while the
other flows within the same activity remain unaffected.

In Figure 15 the notation for initial node, decision node, merge node, and ac-
tivity final node is shown. That diagram shows parts of the dispatching of a
flight. The diagram starts at the “Buy Ticket” action as indicated by the start-
ing node (the black dot). If a passenger disposes of the plane ticket he may
proceed to the check in. At the decision node (the diamond symbol) an input
behavior first detects whether the flying ticket is a first class or economy
ticket. If it’s an economy ticket the passenger proceeds to the normal check
in and to a waiting room afterwards. If it’s a first class ticket the passenger is
dispatched at the first class check in and may wait in the lounge afterwards.
The following step is identical for first class and for economy class passen-
gers. Thus the token flow is merged by a merge node (the diamond shape
with the two incoming edges and one outgoing edge). The outgoing edge of
merge node disposes of a guard, which makes sure that the boarding starts
only as soon as the gate is opened. The process ends after the completion
of the boarding process, which is indicated by an activity final node (the
black dot inside a circle).

Figure 15: Initial node, decision node, merge node, and activity final node

Buy Ticket

1st Class
Check In

Board

Check In

Wait in
Lounge

<<decisionInput>>
Ticket.class =

economy

<<decisionInput>>
Ticket.class =

economy

[no]

[yes] Wait

[gate.open]

 21

Figure 16 shows an example taken from [10] that illustrates the utilization of
a flow final node (the cross in a circle at the right side of the figure). The par-
ticularity here is that due to the utilization of a flow final node it may happen
that after a token has reached the final node and there are no more compo-
nents being built the “Install Component” action can still be active.

Figure 16: Flow final node

2.1.6 Deviations from the Normal Flow of Control

Two means of disrupting the normal flow of control are interruptible activity
regions and exceptions. In this survey only exception handlers will be re-
garded.

Figure 17: Structure diagram for elements for modeling deviations from the normal flow of control

Exceptions within an activity diagram are processed by exception handlers.
An exception handler is an element, which is assigned to a node protected
by the handler and which disposes of a body that is executed in case an ex-
ception of the handled type occurs at the protected node. If there is no han-
dler defined, which matches the exception, it propagates to the enclosing
activity until it is finally caught or until it reaches the topmost level of the sys-
tem. If an exception propagates out of the protected, nested node, all tokens
within that node are terminated. Since an exception handler doesn’t dispose

Build
Component

Install
Component

[no more
components
to be built][more components

to be built]

Interruptible
Activity
Region

Activity

Activity
Group

Activity
Node

Exception
Handler

Executable
Node

 22

of any incoming or outgoing edges by itself it inherits the incoming and out-
going edges of its protected node.

The result tokens of the exception handler body become the result tokens of
the protected node. When the execution body completes execution, it is as if
the protected node had completed execution.

Figure 18 shows how an exception can be handled. A payment is normally
supposed to be performed by credit card. Therefore a customer hands over
his or her credit card within the “Pay With Credit Card” action. Thereupon
the credit card information is passed to the “Process Payment” action, where
the money is debited from the customer’s account. If a customer doesn’t
dispose of a credit card a “NoCard” exception is raised, passed to the re-
spective exception handler (the rectangle containing the “Bank Transfer” ac-
tion) and a bank transfer is initiated. After the bank transfer has terminated
the payment continues with the execution of the “Process Payment” action.

Figure 18: Exception handling

2.1.7 Additional Instruments for Controlling Flows

The instruments for advanced steering of the control and data flow intro-
duced here are all features of specializations of the structured activity node,
which is a structured portion of an activity that doesn’t issue any output to-
kens until all embedded nodes have completed execution (i.e. no tokens are
left inside the structured activity node). On the other hand no node within the
structured activity node starts execution until all input pins and incoming
control flow edges of the structured activity node have tokens. Therefore in
order to accept inputs and provide outputs structured activity nodes can ac-
cess the pins and control flows attached to it. Any activity edge belonging to
the structured activity node must have its source and target node inside the
structured activity node, i.e. no object or control flow edge may lead from
outside the structured activity node inside or vice versa.

Bank
TransferNoCard

Pay With
Credit Card

Process
Payment

Credit Card
Information

Money
Order

 23

Figure 19: Structure diagram for additional elements for steering the control flow

Structured activity nodes may have variables, which allow different activities
within the structured activity node to access the data held by the variable
through read and write operations.

A loop node is an activity node that can be executed multiple times. Even
though modeling loops using the standard activity diagram elements is quite
straightforward as indicated in Figure 20, with loop nodes activity diagrams
provide a means for representing iterative execution of actions and behav-
iors in a more structured way. Moreover loop nodes inherit the properties of
structured activity nodes, which may be desired as well.

Figure 20: “Do while” and “while” loop

Activity

Activity
Group

Activity
Node

Structured
Activity
Node

Expansion
Region

Loop
Node

Conditional
Node

Expansion
Node

Object
Node

Action 1 Action 2

Action 1 Action 2

do while

while

 24

A loop node consists of three subregions, the setup section, a body section
and a test section. The body section is executed as long as the test section
returns a true. The results of the final execution of the body are made avail-
able via pins after completion of the loop.

The setup section is executed once on entry of the loop. A control token is
thereby offered by the loop node to every front end node (= a node without
any predecessors) within the setup section. Additionally the elements within
the setup section of the loop may have individual (typically data flow) de-
pendencies to nodes outside the loop. The setup section is finished when all
of the backend nodes (nodes without any successor within that section)
have completed execution.

When the setup section has terminated or the test section (which may come
before or after the body section) has completed execution and produced a
true value, the body section is executed which terminates as soon as all
backend nodes have terminated. The results of the last execution are then
provided to the successor nodes of the loop via output pins.

The test section disposes of a certain decider pin that indicates after the ful-
fillment of the test section whether the body section shall be executed again.

Figure 21 shows an example for a loop-node. The setup-section of the loop
node is indicated by the keyword “for”, the test-section by the “while”-
keyword, and the body-section by the “do”-keyword in the upper left corners
of the respective sections. In this example the overall sum of a list of incom-
ing prices is calculated. For this before entering the loop-node the number of
prices to sum up is determined. According to the number of prices the body
of the loop node is then executed once for every subtotal.

 25

Figure 21: Example for loop node

An expansion region is a structured activity region that executes multiple
times according to the number of elements in an input collection. The ex-
pansion region is executed once per element in the input collection as long
as there remain elements.

The input/output collections of an expansion region are modeled as expan-
sion nodes, which are special kinds of object nodes. These are broken into
their individual components inside the region, which is then executed once
per element.

If an expansion region has more than one incoming pin all of the input col-
lections at each pin must be of the same kind (expansion node type) and
must hold the same number of elements. But the elements of the different
input collections may have different types.

In case an expansion region has outputs, they must be collections of the
same kind and must contain elements of the same type as the correspond-
ing inputs.

There are three different ways of performing the multiple executions of the
activity region:

MakeInvoice

for
T = Prices

i = 0; Sum = 0

i < n

while

do

i = i + 1 Sum =
Sum + T[i]

n =
sizeOf(Prices)ListOfPrices

PrintInvoice(Sum)

 26

• The executions may happen in parallel

• They may be performed iteratively with one execution being per-
formed after the other. During every iteration one element from the
collection is made available to the region. After each execution of the
region one element is added to the output collection.

• The elements of the collection may be passed to the region as a
stream with the effect that the region is executed only once. There-
fore the region must be modeled to handle streams properly.

Figure 22 shows an expansion region calculating the prices for a collection
of flight segments. This is necessary since a flight consists of at least two
(the outward flight and the return flight) or more (if there are intermediate
landings) flight segments. An expansion region is recognizable by the
dashed line and by its input and output expansion nodes (the small rectan-
gles divided by vertical bars into small compartments). The execution mode
is written in the upper left corner of the expansion region.

Figure 22: Expansion region with multiple contained actions

If an activity region contains only a single node, the shorthand notation de-
picted in Figure 23 can be applied. The activity region then has a continuous
line and the name of the enclosed action is written in the middle of the ex-
pansion region. In this example a trip route is specified by means of a num-
ber of trip segments. These segments are issued as a collection by the
“Specify Trip Route” action. For any of the sections the “Book Flight” expan-
sion region books the respective flight.

Figure 23: Shorthand notation for expansion region containing single node

Book
Segment

Compute
Price

parallel

Specify
TripRoute

Book
Flight
Book
Flight

Print
Itinerary

 27

2.1.8 Additional Means for Structuring Activities

With structured activity nodes one element for subdividing activities has al-
ready been introduced. Structured activity nodes are a specialized form of
activity groups, which serve as a generic construct for grouping nodes and
edges and which don’t have any inherent semantic. Structured activity
nodes are always notated with a dashed round cornered rectangle, which
encloses its nodes and edges and which has the keyword “structured” at the
top.

Figure 24: Structure diagram for elements for structuring activities

Another specialization of activity groups are activity partitions, which are
used to group activities which have some communities. Activity partitions do
not affect the token flow of the model, but they can constrain the activities
contained in the partition and allow them to share contents.

Activity partitions can be multidimensional and swim lanes can express hier-
archical partitioning. Single entities within a partition can be marked as being
“external”, i.e., as not being affected by the partition structure.

A structured partition with hierarchically nested swim lanes is shown in
Figure 25. The sales department of an airline here is responsible for sending
the invoices to the customers. A customer pays the invoice (“Make Pay-
ment” action) and sends his or her credit card data to the accounting de-
partment of the airline, which will process the payment (“Process Payment”).
After the payment has been processed, the flying ticket is sent to the cus-
tomer.

Activity Activity
Group

Activity
Partition

 28

Figure 25: Hierarchical partition structure

In Figure 26 you find an example for a multidimensional partition taken from
[10]. With the “Make Payment” action it also shows an example for an ac-
tion, which is physically contained within a swim cell without actually being
part of it. This means in our case that even though the “Make Payment”
class is contained within the Seattle/Accounting Clerk swim cell this process
is not performed by an accounting clerk in Seattle but by a customer as indi-
cated in brackets.

Figure 26: Multidimensional partitions and “external” nodes

Airline

Sales Accounting

Customer

Send
Invoice

Invoice

Process
Payment

Make
Payment

CreditCard
Data

Ticket

Seattle Reno

O
rd

er
 P

ro
ce

ss
or

A
cc

ou
nt

in
g

C
le

rk

Receive
Order

Fill
Order

Ship
Order

Close
Order

Send
Invoice

<<external>>
(Customer)

MakePayment

Accept
Payment

Invoice

[order rejected]

[order
accepted]

 29

2.2 UML Actions

In activity diagrams as mentioned in the previous chapter actions represent
atomic units of execution, which are not decomposable in further subunits.
In contrast to user defined behaviors actions are processing units that are
provided by UML.

Some actions can be used for invoking user-defined behaviors, others for
getting the values of attributes or linking objects together.

“Call actions” are invocation actions that invoke behaviors. In case it’s a syn-
chronous invocation of a behavior the invocation action returns a return
value.

In Figure 27 you see the notation for an activity being invoked by a call ac-
tion indicated by the rake-style symbol within the action symbol, which shall
suggest the hierarchical structure of an activity.

Figure 27: Invocation of an activity notation

A “send signal action” asynchronously sends a signal instance, which is
generated from the input data of the action, to a target object, where it may
result in the execution of a contained behavior for example. Figure 28 shows
the notation for the send signal action.

Figure 28: Send signal notation

There are also actions, which are activated as soon as an event that
matches certain conditions occurs. These actions are called “accept event

Activity
name

Signal
Type

 30

actions”. Having received a matching event they issue a token describing
the event. If the event is a signal the receiving accept event action is also
called “accept signal action”. If the event is a time event, it is also called a
“wait time action”. In the latter case the token issued by the action contains
the time at which the event occurred. If the event is a change event or call
event the result is a control token. An accept event action with no incoming
edges is always enabled to accept event inputs. The figure below shows the
notation for an accept signal action and for an accept time event action.

Figure 29: Accept signal action and accept time event action

2.3 Example

This section will introduce an activity diagram for a real-world application.
The system that shall demonstrate the application of activity diagrams is a
distributed e-commerce platform for trading food.

The system consists of program modules at a central server computer and
modules that reside at the computers of the platform users. The platform
modules at the users’ computers are integrated with the users’ ERP sys-
tems. The customer-sided modules communicate with the server-sided
modules by means of SOAP transactions. Digital signatures and encryption
protect the transactions.

Signal
Type

Event
Name

Signal
Type

Signal
Type

Event
Name

 31

Figure 30: E-commerce platform

Three different kinds of platform users can be distinguished, whose ERP
systems are connected synchronously to the e-commerce platform. First of
all there are food suppliers, which trade their products via the platform. The
products offered by the suppliers are bought by customers, who locally
maintain a list of available products. Clients may be supervised by clients,
which act as shopping centers and which have to confirm any order placed
by a client before the order is forwarded to the suppliers. An order may com-
prise products, which are provided by different suppliers. Thus the e-
commerce platform is responsible for forwarding the different order sections
to the correct suppliers.

Client
Sided

Platform
modules

Server
Sided

Platform
modules

Oracle
DB

ERP System

Client
Sided

Platform
Modules

Server
Sided

Platform
Modules

Oracle
DB

SOAP
Communication

USER SERVER

Client
Sided

Platform
modules

Server
Sided

Platform
modules

Oracle
DB

Client
Sided

Platform
modules

Server
Sided

Platform
modules

Oracle
DB

ERP System

Client
Sided

Platform
Modules

Server
Sided

Platform
Modules

Oracle
DB

SOAP
Communication

USER SERVER

 32

Figure 31: Interaction between platform users

The e-commerce platform sketched here represents orders in XML, while
any of the customers’ ERP systems may use a different representation.
Hence an order passed by the customer to the e-commerce platform first
has to be converted from the customer specific format into the platform for-
mat in order to enable further processing.

Superordinated
Client

Client n

Supplier 1

Supplier 1

Superordinated
Client

Client n

Supplier 1Supplier 1

Supplier 1Supplier 1

Superordinated
Client

Client n

Product List

Supplier 1Supplier 1

Supplier nSupplier n
1 Place Order

2 Approve Order

3 Deliver Order

 33

Figure 32: Use case diagram for an e-commerce platform

e-commerce platform

Place Order

Approve Ordered Items

Accept Order

Confirm Shipping

Customer

Superordinated Client Supplier

2.3.1 Place Order Use Case

Section: Main

Actor Action System Response

 1. This Use Case begins when the
Customer’s ERP system (CES)
passes an order placement request
to the system. The request is
passed as a string in the customer-
specific format and specifies the
command to be processed (in this
case an order placement) and the
parameters required to carry out
the requested command. In this
case the parameters will be among
others the items to purchase each
with the ordered quantity, the name
of the respective vendors and the
customer id.

2. The System extracts the identifi-
cation number of the requested ser-
vice (which is an order placement)
and the parameters (which are the
ordered items, the corresponding
suppliers and the customer id) be-
longing to it from the string passed
by the CES making sure it involves a
proper service request.

 34

 3. It transforms the order data into
the transport format adding a trans-
action identification number. There-
upon it encrypts and signs the data
cryptographically. Furthermore a
hash total is calculated to protect the
transmitted data against undetected
modifications.

 4. The order is sent to the platform
server by invoking a respective
SOAP service provided by the plat-
form server and committing the pro-
tected order in the transport format
as a parameter. If the server-sided
platform module is not reachable,
the customer-sided platform module
proceeds according to “Retry Mes-
sage Delivery”.

 5. The platform server decrypts the
transmitted data, checks the hash
total and validates the appended
signature. This process may involve
the validation of the originator's pub-
lic key. The order data is extracted
from the transport format afterwards.

 6. It has to be proved now that the
desired order is conformant to the
access rights for this user (authoriza-
tion check).

 7. The order is stored in an oracle
database.

 8. Notify the CES that the requested
service has been invoked success-
fully. This will be realized by means
of a response message for the in-
voked SOAP service. If the cus-
tomer-sided platform module is not
reachable, the server-sided platform
module proceeds according to “Retry

 35

Message Delivery”.

 9. It may be the case for premises
that the order has to be approved by
its superordinated client. If so the
respective approvals have to be
awaited first before the processing
can continue.

 10. As soon as the order approval
has arrived the status of the order is
changed accordingly. Now requests
for the various products, which have
been approved (or which haven't had
to be approved at all), can be sent to
the corresponding suppliers.

 11. Therefore the respective order is
read from the database.

 12. The order has to be transformed
into service requests (in transport
format) holding the order fragments
targeted at the different suppliers.
Afterwards the usual security
mechanisms have to be applied.

 13. The service requests containing
the partial orders are sent to the re-
spective suppliers as a SOAP re-
quest. If one of the corresponding
computer systems is not reachable
the server-sided platform module
proceeds according to section "Retry
Message Delivery".

 14. At the supplier side the system
again decrypts the request in trans-
port format and validates the hash
total and the signature. This process
may involve the validation of the
originator's public key.

 15. Afterwards the identification
number of the platform server initi-

 36

ated service request is extracted
from the request data and the ser-
vice parameters are passed to the
module implementing the delivery of
the order.

 16. This module extracts the order
data from the transformation format,
packs it into the customer-specific
format and passes it to the CES*.

 17. Notify the platform-server that
the (partial) order has been delivered
successfully. If the server-sided plat-
form module is not reachable, the
supplier-sided platform module pro-
ceeds according to “Retry Message
Delivery”.

Section: Retry Message Delivery

Actor Action System Response

 1. The sender-sided platform module
retries to dispatch the SOAP mes-
sage again after five minutes.

 2. If the delivery of the SOAP mes-
sage to the receiver-sided platform
module fails again, the server-sided
module proceeds with step 1.,
unless the delivery has failed already
five times. In this case the sender-
sided module abandons to dispatch
the message.

The figures below show an activity diagram representing the place order use
case described above.

The customer-sided processing of the place order transaction is depicted in
the first diagram. If the “Send SOAP Request” activity doesn’t succeed in

 37

sending the order to the platform-server, the delivery of the order is aban-
doned and the customer is notified by means of an appropriate exception.

Figure 33: Place order use case part 1 – place order customer side

As soon as the platform server receives a place order SOAP request the
server-sided processing of the transaction, displayed in the two diagrams
below, starts. The actions following the “Extract Order From Transport For-
mat” action are combined in a separate activity. The reason for this is the
need to make the “Order” object available to the actions within the activity,
since the order’s identification number is required to retrieve the right order-
object from the datastore node later on.

C
ustom

er

Order In
Customer

Format

Extract
Service Id Extract Order

Transform
Order Into

Transport Format

Protect Order
Crypto-

graphically

Order

Order In
Transport
Format

Send
SOAP
Request

Send
SOAP
Request

Error

Place Order Customer Side

 38

Figure 34: Place order use case part 2 – place order server side

In the diagram below there are two points worth mentioning. First of all con-
cerning the further processing of the order after the platform server has
been given the go-ahead for dispatching the product orders to the suppliers.
The entire order containing the different orders targeted at different suppli-
ers therefore has to be retrieved from the oracle database. The different
products are now sorted by the “Generate Partial Orders” action according
to the suppliers they are provided by. The result is a collection of partial or-
ders, which have to be sent separately to the different suppliers.

The second point concerns the handling of the exception that may be thrown
by the “Send SOAP Request” activity. Exceptions of this type are issued by
the “Send SOAP Request” activity via a pin with the isException attribute
set. The including activity and the “Place Order Server Side” activity on the
other hand use an activity parameter node with streaming capabilities and
without the isException attribute for forwarding the exception. In short a pin
or an activity parameter node with streaming capabilities is able to accept
tokens also during execution. Only this streaming/isException construction
allows the issuing of an exception during the processing of one partial order
without automatically aborting the processing of the other partial orders.

Perform
Security

Calculations

Extract Order
From Transport

Format

Receive
Place Order

SOAP Request

Receive
Place Order

SOAP Request

Receive
Place Order

SOAP Request

Platform
-Server

Order

Authorization
Check

Wait For
Order

Approval

Wait For
Order

Approval[client_has_
superordinated_
client]<<datastore>>

Oracle
Database

[client_doesnt_
have_superordinated_
client]

A

authorizedauthorized

<<selection>>
order.orderId =
Order.orderId

<<selection>>
order.orderId =
Order.orderId

not
authorized

not
authorized

Notify Customer
About Unsuccessful
Service Invocation

Place Order Server Side

Notify Customer
About Successful
Service Invocation

 39

Figure 35: Place order use case part 3 – place order server side

The supplier-sided processing of the transaction illustrated below starts as
soon as the supplier receives a respective SOAP request through the “Re-
ceive Partial Order Delivery SOAP Request” accept event action.

Figure 36: Place order use case part 4 – deliver order

The diagram below displays the dispatching of a SOAP message. Even
though there are actually two different types of SOAP transactions (those
sent from the customer to the platform server and from the platform server
to the supplier), they differ only in the name of their signaling actions and
have thus been combined in one diagram.

Platform
-Server

Platform
-Server

<<datastore>>
Oracle

Database

A

Transform Order
Into Transport

Format

Protect Order
Crypto-

graphically

Send
SOAP
Request

Send
SOAP
Request

<<selection>>
order.orderId =
Order.orderId

<<selection>>
order.orderId =
Order.orderId

parallel

Generate
Partial Orders

Place Order Server Side

{stream
}

{stream
}

Supplier
Supplier

Perform
Security

Calculations

Extract Order
From Transport

Format

Convert Order
Into Supplier

Specific Format

Receive Partial
Order Delivery
SOAP Request

Receive Partial
Order Delivery
SOAP Request

Order In
SS

Format

Order

Order In
Supplier
Format

Notify Platform
Server About
Order Delivery

Notify Platform
Server About
Order Delivery

Deliver Order

 40

The sender tries five times to dispatch a SOAP message. After five unsuc-
cessful attempts the sender gives up and an exception is thrown.

After having successfully dispatched a SOAP message the sender waits un-
til he receives a corresponding return message.

Figure 37: Place order use case part 5 – send SOAP request

2.4 Conclusion

This section shall sketch the evaluation of activity diagrams according to a
preliminary list of assessment criteria. The elaboration of a complete list of
assessment criteria as well as a proper evaluation of the potential process
modeling languages will be part of the next phase of the project.

One of the criteria regarded so far refers to the expressiveness of the con-
sidered languages. One way for measuring the expressiveness of a process
modeling language are so called workflow patterns [15] that identify a cata-

Send SOAP Request

Order In
Transport
Format

attempts = 0

for

attempts < 5
AND

order_sent = false

while

[true] Send SOAP
Request

Send SOAP
Request

[false]

{after 5 min}

order_sent =
true

order_sent =
false;

attempts++

SOAPRequest
Failed

<<decisionInput>>
attempts = 0

<<decisionInput>>
attempts = 0 <<decisionInput>>

attempts < 5
<<decisionInput>>

attempts < 5

Receive SOAP
Response

Receive SOAP
Response

[true]

[false]

Error

do

attempts

 41

log of typical recurrent process structures. Activity diagrams are capable of
representing any of these workflow patterns. Moreover activity diagrams can
express exceptions and interrupts and they can react to external events. Ac-
tivity diagrams explicitly display the flow of control as well as the flow of data
within a process. Additionally activities can be nested arbitrarily.

Another issue that will matter for the selection of an appropriate process
modeling language refers to the unambiguousness of the language. Accord-
ing to the current standard of knowledge it can be made a note of that activ-
ity diagrams dispose of a clear notation while the description of the seman-
tics of the elements doesn’t always appear to be sufficiently unambiguous
for a direct mapping to source code. However, a detailed investigation of the
accuracy of the activity diagram specification is still an open task.

The analyzability of the semantics and syntax of an activity diagram also
forms an assessment criterion. Syntax analysis allows for the verification of
the syntax of a diagram while semantic analysis allows for the examination
whether a diagram violates the semantics of the language specification. Ac-
tivity diagrams still have to be examined with respect to these two proper-
ties.

Concerning usability activity diagrams dispose of a large number of ele-
ments, which complicates the acquisition of activity diagrams. Nevertheless
some of the workflow patterns according to which the expressiveness of a
process modeling language can be evaluated, can be represented only with
considerable effort. Being expanded, activity diagrams get easily cumber-
some. Another drawback of UML 2.0 activity diagrams is currently a lack of
supporting tools.

An advantage of activity diagrams is their propagation. Being part of the
UML standard it can be assumed that many people understand activity dia-
grams and that this will hold for the next years as well.

 42

 43

3 Petri Nets

In 1962 the mathematician Carl Adam Petri published his PhD thesis “Kom-
munikation mit Automaten” [11]. The purpose of this work was to generalize
the existing automata theory by concurrency and parallelism concepts there-
fore proposing a new modeling language that comprises both a graphical
representation as well as an algebraic mathematical one.

Finite automata (finite automata are automata with a limited number of inter-
nal states) had already been developed by Huffmann, Moore and Mealy be-
tween 1954 and1956. Automata in general are used in computer science as
mathematical models for representing information processing systems be-
havior [1].

With the publication of Petri’s thesis it was the first time a general theory for
distributed discrete systems was formulated. Until the mid 1980ies Petri’s
theory, subsequently known as “Petri nets”, was mainly regarded by theo-
rists. From then on, the “classical” Petri nets were extended by various fea-
tures and several Petri net tools were published thereby considerably en-
hancing the practical use of Petri nets.

Nowadays the area of applications in which Petri nets are used is extremely
wide. Petri nets are used in telecommunications for designing and simulat-
ing protocols; they are used for designing distributed software systems, for
modeling (business) processes, for performance analysis, in production en-
gineering, etc. A myriad of books and papers about Petri nets have been
published; this great popularity can mainly be attributed to the fact that Petri
nets combine a graphical representation and a strong mathematical basis
that allows for the execution, simulation and analysis of Petri nets.

The following brief Petri net introduction will first of all introduce the classical
Petri net and its components. These components or elements will then be
used to formulate the most frequently used Petri net routing concepts. The
subsequent chapter deals with the concept of triggering transitions that have
been added to classical Petri nets more recently. The introduction of trigger-
ing is required since sometimes it is not sufficient for a task to be carried out
that the containing Petri net is in the right state, but additionally certain
events or initiatives by some actors external to the modeled system have to
occur first. These additional prerequisites for a task execution are modeled
by means of triggers. The subsequent chapter introduces the color, time,
and hierarchical extensions that were essential for the practical suitability of
Petri nets. A major example completes the Petri net introduction.

 44

3.1 Basic Concepts

In general Petri nets consist of places and transitions. Directed arcs interlink
places and transitions. Arcs may never connect two places or two transi-
tions. Places are represented by circles while transitions are shown as rec-
tangles. Connectors are depicted as arrows. Transitions have input and out-
put places. The input places of a transition are the places at the sources of
its incoming arcs. Accordingly the output places of a transition are located at
the end of its outgoing arcs. In the classical Petri net, each place can hold at
most one token; token are represented by black dots. While the structure of
the Petri net is fixed the tokens may change their position. The current dis-
tribution of the tokens among the places of the Petri net determines its state.

A token passes from one place to its successor in the direction given by the
arcs as soon as the intervening transition fires. A transition may fire if it is
enabled. This is the case when there is one token at any of its input places.
If a transition fires it consumes one token from each of its input places and
produces one token for each of its output places. The firing of a transition
results in the Petri net changing its state. Tokens traversing a transition via
multiple incoming edges are merged. On the other hand if a place disposes
of several outgoing edges a token will only be passed to one subsequent
transition. To which one of the transitions the token will be forwarded is cho-
sen non-deterministically. Several arcs entering a place form an OR-join.
The following chapter will describe the routing concepts for Petri nets more
in detail.

Because transitions can change the state of a Petri net, they are active
components, which typically represent an event, an operation, a transforma-
tion, or transportation. On the other hand places are passive components,
which stand for a medium, buffer, geographical location, state, phase or
condition. Tokens are used to represent physical or data objects.

Extensions to the basic Petri net theory can be classified into three levels
[13]:

• Level 1 Petri net systems are characterized by allowing only unstruc-
tured tokens, that is to say the places may hold at most one unstruc-
tured token at a time.The most important level 1 Petri nets are condi-
tion/event systems.

• Level 2 Petri nets, which are also referred to as place/transition Petri
nets, have so called integer tokens, i.e. the places can serve as a
counter by being able to hold several (optionally up to a certain limit)
unstructured tokens at the same time. This feature can be used in
combination with arc weights, which are available in level 2 Petri nets
as well.

 45

• Level 3 Petri net systems allow the use of high-level tokens, which
are structured tokens with information attached to them. The most
important group of level 3 Petri nets constitutes the group of high-
level Petri nets that comprise colored Petri nets among others.

The example below taken from [14] illustrates fundamental concepts of Petri
nets. It represents two traffic lights at a crossroad. The diagram becomes a
bit more complex since it has to be made sure that one traffic light is always
red. This is reached through the additional place “x” in the middle. Since “x”
has two outgoing edges, either the transition “rg1” or “rg2” will fire first.
Transition “rg1” and “rg2” both are enabled, because any of their predeces-
sor places has a token.

Figure 38: Two sets of traffic lights – state 1

Let’s assume that transaction “rg1” fires first. Tokens are consumed from
place “red1” and “x”. They are merged and placed on place “green1”. The
figure below shows how the Petri net looks like after transition “rg1” has
fired.

yr1

rg1

gy1

yr2

rg2

gy2

red1

yellow1

green1

red2

x

 46

Figure 39: Two sets of traffic lights – state 2

Now transition “gy1” is enabled and will fire. The figure below shows the cor-
responding Petri net.

Figure 40: Two sets of traffic lights – state 3

Because any predecessor place of transition “yr1” now has a token, it is en-
abled and ready to fire. Upon firing transition “yr1” duplicates the incoming
token and places one duplicate on any of its successor places, i.e. place
“red1” and “x”. The figure below, which corresponds exactly to the initial
state, shows the Petri net after transition “yr1” has fired. Notice that now ei-
ther traffic light 1 or traffic light 2 can turn green, since both are enabled.
Due to this conflict, the Petri net does not represent a fair behavior where
the traffic lights turn green alternately.

yr1

rg1

gy1

yr2

rg2

gy2

red1

yellow1

green1

red2

yellow2

green2

x

yr1

rg1

gy1

yr2

rg2

gy2

red1

yellow1

green1

red2

yellow2

green2

x

 47

Figure 41: Two sets of traffic lights – state 4

There may be multiple tokens present in one Petri net at the same time.
Moreover the different tokens may either belong to the same task being
handled by the process represented by the Petri net or they may belong to
different tasks. Since the interaction of tokens from different tasks may be
undesired, it must be made sure that they are handled separately. One way
of uncoupling the tokens is to process the tokens that belong to the same
task each in a separate instance of the Petri net. Another approach for
separating tasks is only feasible in Petri nets with color extension, which will
be introduced in detail later. The tokens are here identified as belonging to
the same task by means of their color. Preconditions assigned to the transi-
tions of the Petri net then make sure that only tokens belonging to the same
task will be processed concurrently.

3.2 Routing Concepts

As indicated above the transitions within a process do not necessarily al-
ways have to be performed one after the other. Likewise the execution of a
transition can be optional, two transitions may be executed concurrently or
the same transition may be executed several times. Any of these routing
concepts called AND-split, AND-join, OR-split, OR-join, and iterative execu-
tion of a transition can be resolved to the basic Petri net elements. However,
in order to simplify the Petri net modeling additional transitions for routing
purposes have been introduced for workflow nets [14]. Since the only aim of
these elements is to illustrate the routing within a Petri net, they are also re-
ferred to as management tasks. Notice that these constructs can be
mapped to standard Petri nets.

Whenever it is not determined whether two or more transitions are executed
concurrently or in an arbitrary order one after the other, it’s about parallel
execution of transitions. The parallel execution of transitions is preluded by
an AND-split. An AND-split transition produces a token on any of its succes-

yr1

rg1

gy1

yr2

rg2

gy2

red1

yellow1

green1

red2

yellow2

green2

x

 48

sor places. An AND-join on the other hand is used to resynchronize parallel
flows. An AND-join is only activated whenever there’s a token on any of its
input places.

Figure 42 introduces the specialized notation for an AND-split and AND-join.
Here and in the following figures introducing the notation for routing ele-
ments the left side will always show the shorthand notation, while the right
side will depict the semantically identical construction using the classical
Petri net modeling elements.

Figure 42: Extended Petri net notation for AND-splits and -joins

Figure 43 gives an example for using the routing elements AND-split and
AND-join. Whenever possible the examples (like this one) correspond to the
respective examples within the activity diagram chapter.

Figure 43: Example for an AND-split and -join

AND-split

tt tt

AND-join

tt tt

Extended Notation Classic Notation

Check In Board

Watch Movie

Eat

Unboard

 49

It’s a matter of selective routing if only one of a number of alternative transi-
tions shall be executed to the exclusion of the others. Two alternative flows
begin with an OR-split, which forwards a token to only one of its outgoing
edges. In classic Petri nets the decision which one of the alternative transi-
tions shall fire is nondeterministic while in the case of Petri nets with color
extension (which will be introduced in more detail later) the transitions may
dispose of preconditions that determine on the basis of the “color” of the to-
ken which branch may be taken. Alternative flows are reunified by means of
an OR-join. Even though there is a special element dedicated for modeling
OR-joins an OR-join can also be represented by a place with several incom-
ing edges. Since this representation is semantically equivalent it is the pref-
erable way of modeling OR-joins as it reduces the number of elements in
the diagram.

Figure 44 illustrates the notations for an OR-split and OR-join and the corre-
sponding routing mechanisms realized by means of the classic Petri net
elements.

Figure 44: Extended Petri net notation for OR-splits and -joins

An example for a Petri net comprising an OR-split and OR-join is depicted in
Figure 45. This example represents the Petri net version of the example
given in Figure 15.

Extended Notation Classic Notation

OR-join

tt

OR-split

tt

tt
decision

rule

t

t

(possible)
preconditions

t

t

t

t

 50

Figure 45: Example for an AND-split and -join

Iterative routing constitutes another routing mechanism. It refers to the case
in which one transition is executed repeatedly. Both “while” and “do while”
loops can be modeled quite easily using the elements introduced so far.

Figure 46 illustrates how both while and do while loops can be modeled in
Petri nets.

Figure 46: Modeling “while” and “do while” loops

3.3 Triggering of Transitions

Like already mentioned in the last chapter a transition has to be enabled in
order to fire, i.e. the containing Petri net has to be in the right state. How-
ever, considering a Petri net as the model of a process, the execution of a
subtask represented by a transition may depend on some additional external
prerequisites, such as an employee that is involved in the processing of the
subtask has to apply explicitly to the task before the processing can start.
These additional external prerequisites that have to be fulfilled for a subtask
to start (provided that it has been enabled) are called triggers.

Buy Ticket

1st Class
Check In

Check In

Board

Wait in
Lounge

Wait

task 1

task 2

c1

c2

c3task 1

task 2

c1

c2

c3c3

c1 c3c2task 1 task 2c1 c3c3c2task 1 task 2

while loop

do while loop

 51

Three different types of triggers can be distinguished:

1. A so called resource initiative, such as an employee that starts apply-
ing to a task

2. An external event like the arrival of an EDI message

3. A time event

Figure 47 sets an example for the utilization of the three different trigger
types. Let us assume that incoming orders shall be processed by a respon-
sible official. For the processing of the order to start an order first has to ar-
rive. This prerequisite (external event trigger) is indicated by the small enve-
lope symbol above the “process order” transition. Moreover, after the order
has arrived, the person in charge of the processing of the orders explicitly
has to turn towards the order and start processing it. This resource initiative
trigger is indicated by the small downward facing arrow besides the enve-
lope symbol. After the order has been processed, it shall be delivered to the
customer. But since products are sent to the customer only once per day,
the delivery time has to be awaited for the delivery to start. This (time event)
is indicated by the small clock symbol above the “deliver products” transition.

Figure 47: Example for the three trigger types

Triggers can also be modeled using the classic Petri net elements. Each
trigger is then represented by an additional place connected with the transi-
tion that needs a trigger in order to fire. The appearance of a token on this
additional place now corresponds to the triggering of the task.

3.4 Higher Petri Nets

Petri nets have been extended in many ways in order to be able to model
complex situations in a structured and more accessible way. The three most
important extensions are the color extension, the time extension and the hi-
erarchical extension. Petri nets with these extensions are called high-level
Petri nets.

start endc2process order deliver products

 52

3.4.1 Color Extension

In classical Petri nets it is impossible to distinguish between two tokens in
the same place. This shortcoming is addressed by the color feature, which
allows for the coupling of the characteristics of an object with the corre-
sponding token. The color extension makes it possible to provide each token
with an arbitrary color or values.

In contrast to the classic Petri net the number and values of the tokens pro-
duced by a transition here may depend on the number and values of the
consumed tokens. In contrast to the classic Petri net not all of the output
places automatically receive tokens upon firing of a transition. Now a choice
is made according to the information available on the token, which place will
receive a token.

In colored Petri nets it is also possible to set preconditions as a necessary
prerequisite for a transition to become enabled. Not only the tokens then
have to be available at the respective input places, but also the precondi-
tions have to be fulfilled for the transition to become ready to fire. Thus pre-
conditions act like transition guards. Whether the precondition of a transition
is fulfilled or not depends on the values of the tokens to be consumed.

In contrast to classic Petri nets the graphic representation of colored Petri
nets now doesn’t contain the entire information any more. In addition to the
diagram it has to be specified which preconditions there are for which transi-
tions, how many tokens are produced for which output place by a transition
upon firing, and the values of the tokens produced, whereas the number and
values of the tokens produced by a transition may depend on the values of
the tokens consumed.

Figure 48 shows an example of how colored tokens can augment the ex-
pressiveness of Petri net models. The example taken from [14] depicts a
process for handling technical faults in a product department. First of all a
fault is examined and categorized based on the token attributes that hold the
relevant properties of the fault (like e.g. a description of the fault, the identity
of the broken component, etc.). Upon categorization the fault can some-
times be solved right away. In order to exclusively determine whether a to-
ken shall proceed to the end place “solved” or to the place “needs repair” the
“categorize” transition disposes of a decision rule that specifies under which
conditions the token shall proceed to which place. In case the fault couldn’t
be fixed immediately it will first now be repaired in a separate step and then
be tested. The “test” transition again disposes of a decision rule that deter-
mines based on the properties of the token whether the fault can be consid-
ered to be solved, whether further repairing is required or whether the fault
is irreparable and the affected component needs to be replaced.

 53

Figure 48: Example for a colored Petri net

3.4.2 Time Extension

The time extension allows for the association of time information with tokens
and transitions. This time information denotes from which time on a token is
available for being consumed by a transition. Hence a transition will only be
enabled at a point of time equal to or bigger than the time denoted by the
required input tokens.

If there are several transitions ready to fire the one enabled by the tokens
with the earliest timestamp is the one that fires first. If there are several tran-
sitions enabled by tokens with the same timestamp a non-deterministic
choice is made. Concerning the consumption of tokens, tokens are con-
sumed on a FIFO basis, i.e. the token with the earliest timestamp is the one
to be consumed first.

Transitions may have a certain delay. The transition delay doesn’t actually
affect the time the transition needs for processing tokens, but only results in
the tokens being issued to receive a new timestamp that corresponds to the
time they have been consumed plus the transition delay. The delay of a
transition may also depend on the values of the processed tokens. Likewise
a transition may have a fix or a random delay.

Figure 49 below shows the exemplary Petri net from Figure 38 - Figure 41
expanded by time data that specifies the processing time of every transition
(indicated by the small numbers within the rectangles attached to the arcs).
The figure also displays the timestamps of the tokens (all zero) at the begin-
ning of the processing. Assuming “rg1” fires the two tokens from place
“red1” and “x” will be merged and the resulting token will be placed on place
“green1” receiving a new timestamp with the value 25. If now “gy1” fires a
token with the timestamp 30 will be produced on place “yellow1”, etc.

fault

replace

solvedcategorize

testneeds test

needs repair

repair

 54

Figure 49: Example for a Petri net with time extension

3.4.3 Hierarchical Extension

The hierarchical extension allows for the better structuring of a Petri net.
Therefore a new element is introduced, a so-called process. A process
represents a subnet of a Petri net comprising places, transitions, and arcs.
Moreover processes again may contain sub-processes thus leading to a hi-
erarchically nested process structure. A process occurs in two different
forms: as a double-bordered square within a process and as the definition of
a process showing the places, transitions, arcs, and sub-processes it con-
sists of.

Figure 50 shows the two representations of a process. With “repair” the ex-
ample from Figure 48 this time contains a structured transition that com-
prises several processing steps as denoted in the process definition
spanned by the dashed line at the bottom of the picture.

yr1

rg1

gy1

yr2

rg2

gy2

red1

yellow1

green1

red2

yellow2

green2

x

00 3030
00

00

55

00

00 3030

2525252555

 55

Figure 50: Example for a Petri net with hierarchical extension

3.5 Example

The following pictures show the same E-commerce platform introduced al-
ready in the Activity Diagram chapter this time modeled as a Petri net.

Figure 51 below shows the customer sided processing of an order and the
first part of the server sided processing from the reception of the “Place Or-
der” request up to the storage of the order in the database. The
“send_soap_request” transition is a process in the abstract representation
hiding the contained elements. Due to spatial constraints the Petri net had to
be divided into several diagrams. The small stars with the index numbers
shall indicate where the token flow continues.

fault

replace

solvedcategorize

testneeds test

needs repair

repairrepair

needs changeneeds tracestart trace needs endchange end

free

 56

Figure 51: Place order use case part 1 – Petri net version

Figure 52 shows the definition of the “send_soap_request” transition.

Figure 52: Place order use case part 2 – Petri net version

extract_service
id

extract_order transform_order
into_transport

format

send_soap
request

protect_order
cryptographically

protect_order
cryptographically

start

receive_place
order_soap

request

perform_security
calculations

extract_order
from_transport

format

authorization
check

notify_customer
about_unsuccessful
service_invocation

store_order
in_database

*3

*1

attempts_=_0

send_soap
request

receive_soap
response

send_soap
request;

attempts++;

send_soap
request;

attempts++;
*2

 57

Figure 53 shows the further processing of an order at the platform-server
comprising optionally the waiting for an order approval by the superordinated
customer, the notification of the customer that the order has been placed
successfully, the retrieval of the order from the database and subsequently
the generation of partial orders that will be sent to the different suppliers.

Figure 53: Place order use case part 3 – Petri net version

In Figure 54 the last processing steps at the e-commerce server are de-
noted, which comprise the transformation of every partial order into the
transport format followed by the delivery of the order by means of a SOAP
request. Moreover it depicts how the partial orders received by the e-
commerce model are delivered to the supplier’s ERP system.

wait_for
order_approval

notify_customer
about_successful
service_invocation

*3

*4

retrieve_pending
order_from_database

generate_partial
orders

 58

Figure 54: Place order use case part 4 – Petri net version

3.6 Conclusion

As indicated above, Petri nets have been successfully used in different ap-
plication domains to model the behavior of dynamic systems with a static
structure. While the classical Petri net provides a limited set of constructs
with well-defined semantics, modeling real world processes with classical
Petri nets typically results in Petri nets of considerable size. For this reason,
higher-level Petri nets have been introduced. Higher Petri nets allow rather
compact modeling of complex processes at the cost of fewer possibilities to
analyze processes. In the context of workflow nets, tools for analyzing work-
flow process specifications have been developed that exhibit efficient run-
time behavior on a large subset of workflow nets. The strengths of Petri nets
in general and workflow nets in particular are their formal foundation and
graphical representation. However, many people feel that even these higher-
level Petri nets are not easily understandable for non-experts that inhibit
even broader applicability of this important process modeling approach.

transform_order
into_transport

format

*4

send_soap
request

*5

receive_partial_order
delivery_soap

request

*5

perform_security
calculations

extract_order_from
transport_format

notify_platform
server_about_order

delivery

convert_order_into
supplier_specific

format

protect_order
cryptographically

end

*1

*2

 59

4 Business Process Modeling Notation

The Business Process Modeling Notation (BPMN) [6] allows the definition of
business processes in diagrammatic form. The notation has recently been
proposed by the Business Process Management Initiative
(http://www.bpmi.org), whose members are major well-known software ven-
dors.

In the presence of many different process modeling approaches the ques-
tion arises, why yet another one? The members of the Business Process
Management Initiative yield expertise and experience in many existing nota-
tions and combined the best ideas into one single standard notation. This
standard should be easily understandable by different business users.
Therefore simplicity was a goal, which stands in contrast to another goal, the
visualization and direct mapping of XML languages designed for the execu-
tion of business processes.

The BPMN is designed to bridge the gap between business process design
and implementation. The long term aim is to automatically visualize business
process execution language programs into standardized business process
diagrams and vice versa. The effort of a human translator is then no longer
needed. The BPMN draft specification already defines a mapping from
BPMN to BPEL4WS (Business Process Execution Language for Web Ser-
vices) [2], as will be described later in this chapter.

The notation is intended to be used with business processes on three differ-
ent levels of abstraction. This includes private, abstract and collaboration
processes. The first is generally known as workflow, it describes business
processes, which are internal to a specific organization. Abstract (public)
processes represent the communication between a private business process
and another process or participant. They contain only the activities needed
for communication. Collaborations define a sequence of activities that repre-
sent the message exchange pattern between two or more business entities.

4.1 Notation

This section describes the achievement of the above goals, especially the
dissolving of the requirement simplicity and the potentially conflicting re-
quirement of mapping complex business processes to business process
execution languages.

Simplicity is achieved through a basic set of core elements for grouping,
primary modeling and connectivity. Using only these core elements, many

http://www.bpmi.org

 60

business processes can be visualized. The core elements can be enhanced
based on their basic visual notation. This means, adding something to the
visualization of a core element, does not change the basic shape. This way,
even new and unknown elements can be mapped back to core elements.

To reach the mapping to business process execution languages, more in-
formation is needed. This information is provided in form of attributes for
each element. Attributes can be set automatically by tools; this includes
unique element ids, default names or conditions. Some default values are
defined by the BPMN specification, always specifying the core format of the
element. By modifying those attributes, enhanced and complex variations
can be created. However, it is not necessarily needed to change the attrib-
utes to receive simple behavior.

Beginning with the core elements, the notation of BPMN is introduced in the
following subsections. This is just an outline of the specified elements; the
complete reference can be found in the BPMN specification [6]. A real-world
example follows in section Example.

Figure 55: BMPN core elements

Po
ol

La
ne

La
ne

Event Activity Gateway
Sequence Flow

Message Flow

Association

4.1.1 Core Elements

The BPMN core element set can be divided into three groups. These groups
include elements for grouping, primary modeling and connectivity. Every-
thing in BMPN can be modeled by further specializing single core elements.
The core elements are shown in Figure 55.

The primary modeling elements are events, activities and gateways. Events
are something that “happens” in the course of a business process. They af-

 61

fect the flow of the process and can have a trigger or a result. An activity is
work a company performs; it can be atomic or complex. Gateways are used
as controlling structures for sequence flows.

Sequence flows connect events, activities and gateways and therefore be-
long to the connectivity elements. The sequence flow defines the possible
flow of the process. Message flows show the flow of messages between
businesses. An association connects further information, like descriptions, to
the core elements.

All primary modeling elements are placed inside pools. A pool is a container
for grouping a set of activities for a particular organization. To further de-
compose an organization into specific units, so-called swim lanes inside a
pool can be used. The pools can be black or white boxed. A black box pool
hides it inside details; communication can only occur to the outside line of
the pool, whereas a white box pool shows it inside details and allows com-
munication to inside elements.

Figure 56: Example using BPMN core elements

C
om

pa
ny

D
is

tri
bu

tio
n

Sa
le

s

Process
Order

Handle
Credit Card

Handle
Cash

Ship
Order

Payment

Credit Card

Cash

XOR-Gateway

Ba
nk

Black Box Pool

White Box Pool B2B Message Flow End Event

Start Event

An example of a BPMN diagram using almost exclusively the core elements
is given in Figure 56. That particular process begins with a generic event,
called start event. After processing the order, a decision for a payment
method must be made. If “Credit Card” is chosen, the transaction must be
confirmed by another participant: a bank. The bank is a black box pool in
this example; internal processes are unknown. Afterwards the order can be

 62

shipped. The process ends with an end event, a slight modification of the
basic event type.

4.1.2 Events

As explained earlier, the core elements can be modified to achieve more
complex behavior. An example was given in Figure 56, where the core ele-
ment event has been named start event and a derived shape, with a bolder
outline, end event. The intermediate event is a third form, visualized using
two circles. It does affect the flow of the process, but will not start or end it.

Figure 57: Complete list of BPMN event types

Start

Intermediate

End

M
es

sa
ge

Ti
m

er

Ex
ce

pt
io

n

C
an

ce
l

C
om

pe
ns

at
io

n

R
ul

e

Li
nk

M
ul

tip
le

Te
rm

in
at

e

Based on start, intermediate and end events, different types of events have
been specified. They are shown in Figure 57. In BPMN all start events pro-
duce a “token”, which follows the sequence flow of the process. All end
events consume a token. This is in contrast to other notation like Petri nets,
where transitions consume and produce tokens. The start and end events
are optional. If they are suppressed, every activity that has no incoming se-
quence flow acts as a start event and every activity that has no outgoing se-
quence flow acts as an end event. The process finishes when all parallel
paths have been completed.

Figure 58: Example of the message events

Handle support
request

Create response
record

Receive support
request

Wait for internal
tech. response Send solution

The message event can be used to model communication with other partici-
pants, which can be omitted in the diagram or exist in another pool. The

 63

message start event triggers the start of the process after the arrival of a
message, while the message end event finishes the process and sends a
message to a participant. The message intermediate event stops the proc-
ess to wait for the receipt of a message. An example is shown in Figure 58.

Figure 59: Example of the timer events

Collect votes Create report

Every Monday at
10am

After 8 hours

Wait till 8pm

Publish report

The timer start event triggers the start of a process to a specific time or time
cycle. The timer intermediate event delays the process flow for a given time
value or interrupt an activity at a specified time or duration. An example for a
voting process is shown in Figure 59.

The exception events are used within exception handling; they are described
in section 2.1 (Activities).

The cancel events are used to abort transactions, while the compensation
events are used for compensation handling. The usage is described in sec-
tion 2.1 (Activities).

Figure 60: Example of the rule events

External
Temperature
below 15°C

Heat Standby

Internal
Temperature
above 22°C

Internal
Temperature
below 18°C

Disable heating

External Temp above 18°C

The rule start event works similar to the timer start event; the condition is set
to a rule like “Temperature below 15°C”. The rule intermediate event is used
for exception handling when a named rule becomes true. An example is
given in Figure 60. Because the rule intermediate event is only used for ex-
ception handling, it has to be placed on the edge of an activity, as it creates
exceptional flow. Exceptional flow is equal to sequence flow; it just opens a
separate path.

 64

The link start and end events connect the end of one process to the start of
another. The link intermediate events connect the end of one process to the
start of an event-based exclusive decision. This type of decision is described
in section 4.1.4 (Gateways). The final usage of the link events is still an
open issue in the BPMN draft specification; therefore no concrete example
can be given.

Figure 61: Example of the multiple events

Create forecast
report

Monday at
6pm or 100
votes given

Send forecast report to
management and

financiers

The multiple event is used if there exists different ways of starting, ending or
disturbing a process. The multiple events can be seen as a list of almost any
other events, automatically choosing the triggering event. An example is
given in Figure 61.

The terminate event indicates a fatal error and therefore stops all (parallel)
activities in the process without any exception or compensation handling.

4.1.3 Activities

Activities can be divided into processes, sub-processes and tasks. Sub-
processes can contain other sub-processes. IN BPMN a process is activity
performed within a company or organization. The term business process re-
fers to one or more of those processes. Each process may have its own
sub-processes and is contained within a pool. If the business process dia-
gram contains only one pool, then the pool can be omitted.

 65

Figure 62: BPMN sub-processes

~

Collapsed
Sub-Process

Expanded Sub-Process

Loop Multiple Instance Ad-Hoc Compensation

A sub-process defines compound activity. It can be shown collapsed, hiding
its details or expanded, showing its inside details. A collapsed sub-Process
is marked with a square and a plus sign inside (see Figure 62). Sub-
processes can have four special markers for further specializing the type.
Those markers can be combined in any combination with the exception of
loop and multiple instances together.

The loop marker announces sequentially repeated activity, whereas a multi-
ple instance marker denotes parallel activity. The ad-hoc marker defines a
variable execution order of the contained activities. A compensation sub-
process groups several activities for compensation.

 66

Figure 63: BPMN transactions

Book Flight

Book Hotel

Cancel Flight

Send Notice

Call Customer
Service

Exceptions
(Hazards)

Charge Buyer

Booking

Successful
Bookings

Failed
Bookings

Cancel Hotel

A special kind of sub-process is a transaction, using a double-lined bound-
ary (see Figure 63). Transactions can have three basic outcomes: success-
ful completion, failed completion and exceptions. Successful completion re-
sults in normal sequence flow. If the transaction is canceled, all intermediate
compensation events are called. After successful compensation handling,
the flow continues from the intermediate cancel event. If an exception oc-
curs and neither normal completion nor cancel is possible, the activity is in-
terrupted without compensation and the flow continues from the intermedi-
ate exception event.

Figure 64: BPMN task types

Task Loop Multiple Instance Compensation

A task is an atomic activity within a process. In BPMN four different types of
tasks are defined (see Figure 64). A basic task is a single activity. A loop is
a sequentially repeating activity, whereas a multiple instance task denotes
parallel activity. The compensation task is used for compensation activity,
which is linked to a compensation event (see Figure 63).

 67

4.1.4 Gateways

Gateways are used as controlling structures for sequence flow. They can
decide, split or merge the flow of the process. The possible gateways are
shown in Figure 65.

Figure 65: BPMN gateway types

Exclusive Decision/Merge

Data-based XOR Event-based XOR

or

Inclusive
Decision/Merge

(OR)

Complex
Decision/Merge

Parallel
Fork/Join

(AND)

The interesting types are the event-based XOR and the complex gateway.
The complex gateway defines conditions, which can refer to sequence flow
and process data. With complex gateways, constructs of arbitrary other
gateway types can be merged into one single gateway.

Figure 66: BPMN event-based XOR gateway example

The event-based XOR gateway is used to model decisions based on events
rather than process data. The process flow will continue if one of the speci-
fied events becomes true. In the example in Figure 66, this might be a “Yes”
message, a “No” message or a timeout.

4.1.5 Sequence and Message Flow

Sequence flow occurs between activities in a process, whereas message
flow occurs between different processes. As mentioned earlier, a process
resists in a pool. Therefore sequence flow can only occur inside a pool; it
can not cross the borders. This is the intention of message flows, represent-
ing B2B communication. The flow types are shown in Figure 67. Another ex-
ample for message flow is shown in Figure 56.

 68

Figure 67: BPMN sequence and message flow types

Store Bank
Authorization

Request

Authorization
Response

Sequence Flow

Conditional
Sequence Flow
Default
Sequence Flow

4.1.6 Associations

Associations connect information and artifacts with elements. The only arti-
fact yet specified is a data object. Associations are shown in Figure 68.

Figure 68: BMPN association types

Create
List

Mail
List

List

Association

Directional Association

4.1.7 Attributes

Every BPMN element owns attributes, which exactly define it. These attrib-
utes are used for mapping to executable languages. Almost every element
has the basic attributes Id, Name, Pool (Lane), Assign and Documenta-
tion. The first three attributes can be set automatically by modeling tools,
whereas Assign describes an expression that shall be evaluated when the
flow of the process arrives at the specific element.

Most of the Attributes are fully or partially visualized in the graphical repre-
sentation of the element. The loop marker of a sub-process for example, is
backed by LoopCondition, Counter, Maximum and TestTime attributes.
events usually have a Trigger attribute, which defines the type of the
event. Based on the type, other attributes can be set, for example a Timer,
an Exception or a Rule Attribute. Other elements have other attributes,
which can be found in the official specification [6].

4.2 Example

In this section, the example introduced in the UML Activity Diagram part is
visualized using BPMN. The notation allows different levels of abstraction; a
good modeling start point is an abstract (or public) process view of all par-

 69

ticipants. A first view of the E-Com platform could therefore show the differ-
ent businesses and their message flows (see Figure 69).

Figure 69: High level message flow for an e-commerce platform

C
us

to
m

er
Pl

at
fo

rm
-S

er
ve

r
Su

pp
lie

r

Place Order
Customer Side

Placer Order
Server Side

Deliver
Order

The platform consists of three participants, each represented by a pool. The
pools are white boxed, showing its inner details. As can be seen by the
small plus signs, all activities can be expanded. The first sub-process is
Place Order Customer Side (see Figure 70).

 70

Figure 70: Expanded sub-process "Place Order Customer Side"

Place Order Customer Side

Extract
Service ID

Order in
Customer Format

Extract
Order

Transform
Order into

Transport Format

Order

Protect Order
Cryptographically

Order in
Transport Format

Send SOAP
Request

Catch Exception

The sub-process shown only contains sequential activities. The flow of the
data and the data types are represented as informal data object associa-
tions. The Send SOAP Request activity is itself a sub-process, capable of
throwing an exception event. This event is captured at the border of the sub-
process and can be further processed.

Figure 71: Expanded sub-process "Send SOAP Request"

Send SOAP Request

attempts=0 attempts++

Attempts<5

5 min.

Wait 5 minutes till retry

Send SOAP Message

Receive
SOAP

Response

The Send SOAP Request sub-process shown in Figure 71 tries five times
to send a SOAP message with a delay of five minutes for each retry. If the
sending finally fails, an exception event is generated. If the message is sent
successfully, the process stops until the arrival of the SOAP response. The
expanded sub-process, which sends the SOAP message using a message
event, is needed to catch the exception. The dispatching of a message
could also be modeled using an outgoing message flow from the border of

 71

an activity. It is than internally mapped back to the representation shown
here.

The expanded Place Order Server Side sub-process is shown in
Figure 72. The process starts with receiving a SOAP message from a par-
ticipant. After checking the authorization, a successful/unsuccessful service
invocation message is send back to the participant. If a superordinated client
exists, the process stops until the arrival of an approval message. Afterward
several parallel sub-processes are invoked, producing requests for partial
orders send to other participants. These partial order requests are shown
here as transactions, meaning all or nothing of each will be completed. The
Place Order Server Side sub-process finishes when all parallel sub-
processes have finished.

Figure 72: Expanded sub-process "Send Order Server Side"

Place Order Server Side

Receive Place
Order SOAP

Request

Perform
Security

Calculations

Extract Order
from Transport

Format

Authorization
Check

Order

Notify Customer
about unsuccessful
Service Invocation

Authorization
failed

Auth
Ok?

A
ut

ho
riz

ed

Generate
partial Orders

Transform Order
into Transport

Format

Protect Order
Cryptographically

Send SOAP
Request

Order in
Transport Format

Catch Exception

Store Order
in Database

Retrieve Pending Order
from Database

Notify Customer
about successful
Service Invocation

Yes

No

Wait for
Order

Approval

Client has
superordinated
Client

 72

The Deliver Order Sub-Process (see Figure 73) is invoked as soon as it
receives a partial order SOAP message. It performs some sequential activi-
ties and finally sends a SOAP response.

Figure 73: Expanded sub-process "Deliver Order"

Deliver Order

Perform
Security

Calculations

Extract Order
from Transport

Format

Convert Order
into Supplier

Specific Format

Order

Notify Platform
Server about Order

delivery

Order in Supplier
Specific Format

Receive Partial
Order Delivery
SOAP Request

The Business Process Modeling Notation aims to be more “higher level”
than UML; it contains no object flow or storage. The former can be displayed
informal using associations, as can be seen by the data objects in the ex-
ample diagrams. The later is displayed using activities. The notation uses
the concept of message flows to represent B2B communication. It assumes
that every process is placed inside a pool and that the “horizontal” commu-
nication line inside the pool consists of sequence flows between activities.
The “vertical” communication line crosses pools and uses message flows for
communication between different processes. Using these concepts, it is
possible to model different levels of abstractions in a very simple but yet
powerful way.

4.3 Mapping to executable languages

The mapping of BPMN to executable languages is still under development.
An executable language allows the computerized execution of programs or
instructions written in this language, either interpreted or compiled. The
working draft specification [6] defines an incomplete mapping to BPEL4WS
[2]. To understand the mapping from BPMN to BPEL4WS, a short introduc-
tion to BPEL4WS is given, followed by the basic mapping rules. To conclude
the mapping section, a short example is given.

 73

4.3.1 Mapping BPMN to BPEL4WS

The Business Process Execution Language for Web Services (BPEL4WS)
deals with the orchestration of web services. In the context of BPMN, a web
service can be seen as a way to perform an activity, as complex as ever it
might be.

BPEL4WS is a XML language which defines a model and grammar for de-
scribing web service based business processes. It relies on other specifica-
tions like WSDL [16] for describing web services or XPath [17] for address-
ing elements. Enhanced features like fault and compensation handling are
included.

BPEL4WS is a convergence of several older specifications. It is supported
by a group of big players like BEA, IBM, Microsoft, SAP and Siebel and has
a still emerging tool support, for example from Collaxa
(http://www.collaxa.com).

Figure 74 shows the mapping of selected BPMN elements to BPEL4WS.
Not every element is already specified. Every pool in BPMN maps to its own
BPEL4WS document. Since BPMN allows the omitting of elements like start
and end events as well as the creation of arbitrary circles, the diagram has
to be analyzed. Therefore the BPMN specification mentions the concept of
“Token Analysis”, using a token to traverse all possible sequence flows of
the process. The details are yet an open issue.

Figure 74: Mapping selected BPMN elements to BPEL4WS

BPMN element BPEL4WS element(s)
- Assign attribute for every ele-

ment <assign>

Message Start Event, Link Start
Event <receive>

 Message End Event <reply>

 Exception End Event <throw>

 Compensation End Event <compensate>

 Link End Event <invoke>

 Terminate End Event <terminate>

 Message Intermediate Event <receive>, <on-
Message>

 Timer Intermediate Event <wait>, <throw>
 Exception Intermediate Event <catch>

Compensation Intermediate
Event

<compensationHan-
dler>

http://www.collaxa.com

 74

BPMN element BPEL4WS element(s)

 Sub-Process <invoke>, <re-
ceive>, <reply>

 Task
<receive>, <re-
ply>, <invoke>,
<while>

 Data-based Gateways <switch>

 Event-based Gateways <pick>

Almost every BPMN element has the Assign attribute, which is mapped to
the corresponding BPEL4WS <assign> tag. As can be seen in Figure 74,
most events have a one to one mapping to BPEL4WS. Exceptions are the
timer and message intermediate events, which could map to different tags,
depending on their configurations. In normal sequence flow, they are
mapped to a <receive> or <wait> tag. If they are attached at the border
of an activity, the message intermediate event is mapped to the <onMes-
sage> tag, whereas the timer intermediate event maps to a <wait> fol-
lowed by a <throw>.

The mapping of a sub-process depends on the message flows attached to it.
If there is none, the sub-process will map to the <invoke> tag, which just
calls a web service to fulfil the sub process. If the sub-process has an incom-
ing message flow, it will map to a <receive> followed by an <invoke>. If it
has an outgoing message flow, it will map to an <invoke> followed by a
<reply>. If the sub-process has an incoming and outgoing message flow, a
sequence of the <receive>, <invoke> and <reply> tags is used for
mapping.

The mapping of the BPMN task element depends on the type of task, which
can be set by attributes. A standard task maps to an <invoke> with the
BPEL4WS input and output variable specified. A receive task will map to
<receive>, whereas a send task will map to <reply> or <invoke> with
just the input variable set. A loop task maps to <while>.

The data-based gateway maps to the <switch> tag, whereas an event-
based gateway maps to the <pick> tag.

 75

4.3.2 BPEL4WS Mapping Example

To show the mapping from BPMN to BPEL4WS a small part from the exam-
ple section is chosen (see Figure 75). It is a part of the Place Order
Server Side sub-process, containing activities, gateways and events.

Figure 75: Diagram example for mapping to BPEL4WS

Store Order
in Database

Retrieve Pending
Order from Database

Notify Customer
about successful
Service Invocation

Yes

No

Wait for
Order

Approval
Client has
superordinated
Client

This example focuses on the mapping from BPMN to BPEL4WS. Therefore
only the main flow is shown in Figure 76. Also, for clearness, some attrib-
utes are omitted. The BPEL4WS XML source code was derived from Figure
75 using the mapping rules shown in Figure 74.

 76

Figure 76: Derived BPEL4WS source code

<scope name="PlaceOrderServerSidePartly">

<sequence>

<invoke name="StoreOrderInDatabase” inputVariable=”processData”
 outputVariable=”processData”/>

<flow>

 <sequence>

<reply
name="NotifyCustomerAboutSuccessfulServiceInvocation"/>

 </sequence>

 <sequence>

 <switch name="ClientHasSuperordinatedClient?">

 <case condition="Yes">

<receive name="WaitForOrderApproval"/>

</case>

 <otherwise>

 <empty/>

 </otherwise>

 </switch>

 </sequence>

 </flow>

<invoke name="RetrievePendingOrderFromDatabase"

 inputVariable=”processData”
 outputVariable=”processData”/>

 </sequence>

</scope>

1

2

3

4 5

6 7

8 9

10 11

12

The main flow is surrounded by a <sequence> tag (1), because there is
one starting and one ending activity, which indicate a serial flow. In (2), the
Store Order in Database activity is called. A standard task has input
and output variables set and is mapped to the <invoke> tag. Next follows a
parallel fork, which is mapped to a <flow> tag (3). The parallel flow con-
tains two serial flows, which are mapped to <sequence> tags (4, 6). The
first flow (5) sends a message through a message end event, which is
mapped to a <reply> tag. The second flow contains an or-gateway, which
is mapped to the <switch> tag (7). The constraints are evaluated through
a <case> tag (8). If the condition is true, a <receive> tag (9) is the fitting
mapping for an intermediate message event in normal flow. Otherwise, noth-
ing happens, which is declared in (10) by an <empty> tag (11). At last, the

 77

Retrieve Pending Order from Database activity is mapped to an-
other <invoke> tag.

4.4 Conclusion

The Business Process Management Initiative tries to establish a standard
notation for business processes, which business users can easily under-
stand. Also the notation can be mapped to execution languages like
BPEL4WS.

The ease of use is reached through a basic set of core elements, which can
be extended graphically and further configured by attributes. The BPMN
draft specification contains an informal chapter of how elements can be
mapped to BPEL4WS. The tools for mapping still don’t exist; however there
is a solution from Popkin Software (http://www.popkin.com) that supports
modeling in BMPN based on a former draft specification.

BPMN is still under development, the draft specification itself names some
problems that still have to be solved. This includes things like the behavior
of transactions, a more formal mechanism of defining graphical extensions,
new attributes as well as mapping to languages for abstract and choreogra-
phy business processes (e.g. ebXML BPSS). BPMN still needs to be speci-
fied as a XML language layer above business process execution languages.

Technically, BMPN supports sequence and message flows; therewith it
makes a clear cut between intra and inter-process communication. It can be
used to model private, abstract and collaboration processes with different
levels of detail.

The notation stays on a higher level without using things like object flow.
Still, it is yet a draft and very little documentation beside are available. The
strong needs for a standard notation for business processes exists and the
three-part notation (core elements, extensions, attributes) makes a good
start. However there is no mathematical foundation behind BPMN and the
mapping to executable languages is still in the beginning.

http://www.popkin.com

 78

 79

5 Conclusions

This report presented three different approaches for modeling business
processes. Generally speaking any of them can be considered to be of great
expressiveness. However, BPMN is rather used for business modeling,
while UML activity diagrams are more targeted at technical processes and
software immediately implemented in software, while Petri nets are used for
a wide range of purposes. The notation of any of these modeling techniques
is specified clearly. Concerning the semantics of the elements only Petri
nets dispose of a precise mathematically defined semantics, allowing for
manual as well as computer aided semantics examinations. Based on their
audience, which can be rather academic, technical or businesslike, the nota-
tions focus on different aspects of a process.

BPMN covers a wide range of high level abstractions like collaborations be-
tween different processes up to generic activities, whereas UML activity dia-
grams also cover technical details like object flow and storage. None of the
presented notations provides explicit elements for the representation of vari-
abilities of a process. UML activity diagrams and Petri nets support some
kind of inheritance. However, more research has to be done in order to con-
clude this topic. The more recent languages UML activity diagrams and
BPMN provide special elements for modeling concepts like events, inter-
rupts, and exceptions. BPMN also provides mechanisms for specifying
transactions.

To summarize, the UML covers a broad spectrum and is well established.
UML activity diagrams provide a wide variety of elements making the activity
diagram modeling more comfortable but also harder to learn. Also Petri nets
are very well established featuring many tools, extensions, and literature. In
contrast to activity diagrams Petri nets are easy to learn, but due to their lim-
ited means of expression less comfortable to handle. Both, activity diagrams
and Petri nets get quickly cumbersome being used for modeling complex
processes. BPMN is a newcomer, combining ease of use with a notation
that is intuitively to learn. However, the applicability of BPMN in real world
applications has yet to be shown.

 80

References

[1] Balzert, H.: Lehrbuch der Software-Technik I: Software Ent-
wicklung. Textbook, Heidelberg: Spektrum-Verlag 2000

[2] BEA Systems et al.: Business Process Execution Language
for Web Services Version 1.1, May 2003

[3] Berkenkötter K.: Using UML 2.0 in Real-Time Development: A
Critical Review. University of Bremen, 2003. Internet-URL:
http://www-
verimag.imag.fr/EVENTS/2003/SVERTS/PAPERS-WEB/04-
Berkenkoetter-UMLRT-critic.pdf [accessed in December 2003]

[4] Björkander, M., Kobryn, C.: Architecting Systems with UML
2.0. IEEE Software pp 57-61, July 2003. Internet-URL:
http://www.uml-forum.com/out/pubs/IEEE_SW_Jul03_p57.pdf
[accessed in December 2003]

[5] Born, M., Holz, E., Kath, O.: Softwareentwicklung mit UML 2.
München: Addison-Wesley 2004

[6] Business Process Management Initiative (BPMI): Business
Process Modeling Notation Working Draft 1.0, August 2003

[7] Chonoles, M. J., Schardt , J. A.: UML 2 for Dummies. Indian-
apolis: Wiley 2003

[8] Eshuis H.: Semantic and Verification of UML Activity Dia-
grams for Workflow Modelling. Ph.D.-thesis No. 02-44, Centre
for Telematics and Information Technology, University of
Twente, Enschede, 2002

[9] Kramler, G.: Overview of UML 2.0 Abstract Syntax. Techni-
sche Universität Wien. 2003. Internet-URL:
http://www.big.tuwien.ac.at/staff/kramler/uml/uml2-
superstructure-overview.html [accessed in December 2003]

http://www.uml-forum.com/out/pubs/IEEE_SW_Jul03_p57.pdf
http://www.big.tuwien.ac.at/staff/kramler/uml/uml2-

 81

[10] OMG: Unified Modeling Language: superstructure. Version
2.0. 2003. Internet-URL: http://www.omg.org/cgi-
bin/doc?ptc/2003-08-02 [last accessed in October 2003]

[11] Petri, C. A.: Kommunikation mit Automaten. Institut für In-
strumentelle Mathematik, Schriften des IIM Nr.2, Bonn, 1962

[12] Schnieders, A.: Application of web service technologies on a
b2b communication platform by means of a pattern and UML
based software development process. Diplomarbeit, Techni-
sche Universität Berlin, 2003

[13] Trompedeller, M.: A Classification of Petri Nets. 1995. Inter-
net-URL: http://www.daimi.au.dk/PetriNets/classification/ [ac-
cessed in December 2003]

[14] van der Aalst, W.M.P., van Hee, K. M.: Workflow Manage-
ment: Models, Methods, and Systems. Cambridge: MIT Press
2002

[15] van der Aalst, W.M.P., ter Hofstede, A.H.M., Kiepuszewski,
B., et al.: Workflow Patterns. Department of Technology Man-
agement, Eindhoven University of Technology

[16] W3C: Web Services Description Language (WSDL) Version
1.1, March 2001

[17] W3C: XML Path Language (XPath) Version 1.0, November
1999

http://www.omg.org/cgi-
http://www.daimi.au.dk/PetriNets/classification/

