
Investigation on Soundness 
Regarding Lazy Activities

Frank Puhlmann and Mathias Weske

Business Process Technology Group
Hasso-Plattner-Institute

Potsdam, Germany

1



Outline

2

• Motivation (Problem Statement)

• Soundness Classification (Related Work)

• Lazy Soundness (Solution)

• Conclusion



Motivation

3



Soundness (Informal)

• From each activity reachable from the initial 
activity, the final activity is reachable (i.e. 
the process is free of deadlocks and 
livelocks)

• After the final activity has been reached no 
other activities are active

• There are no unreachable activities (i.e. 
each activity participates in the process)

4



Motivation
• Some workflow patterns cause problems regarding 

soundness:

• Discriminator

• N-out-of-M-Join

• Multiple Instances without Synchronization

• All these patterns can leave running (lazy) activities 
behind

5



A

B

C

2 D
3

Example
6



Soundness 
Classification

7



Relaxed

Sound
Weak

Sound
Sound

Soundness Classification
8

[according to van der Aalst, Dehnert, Martens]



Lazy
Sound

Relaxed

Sound
Weak

Sound
Sound

Soundness Classification
8

[according to van der Aalst, Dehnert, Martens]



Lazy Soundness

9



Process Graph

10

• A process graph formally defines the static structure 
of a business process as a four-tuple P=(N,E,T,A):

• N is a finite, non-empty set of nodes.

• E is a set of directed edges between nodes.

• T is a function mapping types to nodes.

• A is a function mapping key/value pairs to nodes.



Process Graph Example
11

Investigations on Soundness Regarding Lazy Activities 7

to a process graph. We consider business processes given as a Business Process
Diagram (BPD) of the Business Process Modeling Notation (BPMN) [17]. Other
graph-based notations like EPCs or UML2 Activity Diagrams can be mapped
in a similar manner.

Example 1 (Partly Mapping of a BPD to a Process Graph). A BPD is exemplary
mapped to a process graph P = (N,E, T, A) by the following steps:

1. N is given by all flow object of the BPD.
2. E is given by all sequence flows of the BPD.
3. T is given by the corresponding types of the flow objects.
4. A is given by additional attributes of flow objects, e.g.:

(a) The number of incoming sequence flows for an n-out-of-m-join node;
(b) The number of instances to be created for an activity;
(c) The nodes to be canceled for a cancel event. !

An actual example of a business process modeled in BPMN is given in Figure 2.
The process contains a n-out-of-m-join pattern, modeled by a gateway with the
number of required sequence flows inside, as well as a multiple instances without
synchronization pattern, modeled by activity D. The activities A, B, and C
can represent sub-processes for contacting three different experts for writing
an expertise. After two of them are ready, the process continues. However, some
cleanup work is left for the remaining activity, e.g. receiving the last expertise and
paying the expert. Although this does not directly contribute to the process, it is
still required. Activity D send the accepted expertises to three different involved
persons. This is again a lazy activity, as the business process can actually finish,
even while the documents are actually in delivery. The complete business process
diagram is mapped to a process graph according to the mapping rules given in
Example 1.

Example 2 (Expertise Process). The process graph P = (N,E, T, A) of the ex-
ample from Figure 2 is given by:

1. N = {N1, N2, N3, N4, N5, N6, N7, N8}
2. E = { (N1, N2), (N2, N3), (N2, N4), (N2, N5), (N3, N6), (N4, N6),

(N5, N6), (N6, N7), (N7, N8) }
3. T = {(N1, StartEvent), (N2, ANDGateway), (N3, Task), (N4, Task),

(N5, Task), (N6, N -out-of -M -Join), (N7,MIwithoutSync),
(N8, EndEvent)}

4. A = {(N6, (continue, 2)), (N7, (count, 3))} !

4.2 Semantics

We now give formal semantics to a process graph by mapping it to π-calculus
processes according to the following algorithm.

Algorithm 1 (Mapping Process Graphs to π-calculus Processes). A
process graph P = (PN , PE , PT , PA) is mapped to π-calculus processes as follows:

A

B

C

2

N1
N2

N3

N4

N5

N6
N7 N8

e1

e2

e3

e4

e5

e6

e7

e8 e9
D

3



Structural Soundness

• A process graphs is structural sound iff:

• There is exactly one initial node.

• There is exactly one final node.

• Every node is on a path from the initial 
node to the final node.

• Easy to show

12



• Semantic Reachability:

• A node of a process graph is semantically reachable from 
another node iff there exists a path leading from the first 
to the second node according to the semantics of all 
nodes.

• Lazy Soundness:

1. The final node must be semantically reachable from every 
node semantically reachable from the initial node until the 
final node has been executed.

2. The final node is executed exactly once.

Lazy Soundness

13



Structural 

Sound Process

Initial

Node

Final

Node

Lazy Soundness Observation
14



Structural 

Sound Process

Initial

Node

Final

Node

Lazy Soundness Observation
14



Task

Initial

Node

Final

Node

Trivial Lazy Sound Process
15



Lazy Soundness in 
Pi-Calculus

• We observe the initial and the final activity by 
annotating the pi-calculus mapping of a process 
graph with i and o (initial, final activity)

• If we observe i and o exactly one time, the mapping 
is lazy sound

• Done by deciding

• with D = pi-mapping, 

16

12 Frank Puhlmann and Mathias Weske

2. Direct proof. Lazy soundness for SLAZY is proved by constructing all transi-
tions: i.τ.o.0 i→ τ.o.0 τ→ o.0 o→ 0. The transition trace proves that the initial
node is always executed once (observability predicate ↓i), all possible transi-
tions are executed thereafter (one τ -transition), and eventually the final node
is executed (observability predicate ↓o) before SLAZY reaches inaction. !

Now we are ready to introduce the theorem for proving lazy soundness on
structural sound process graphs mapped to a lazy sound π-calculus representa-
tion.

Theorem 1. Each structural sound process graph P more complex then PMIN

is mapped to a lazy soundness annotated π-calculus process D, so that D ∼o
i,o

SLAZY if and only if P is lazy sound. !

Proof (Theorem 1). Direct proof. Each structural sound process graph more
complex then PMIN is mapped to a lazy soundness annotated π-calculus pro-
cess D with ↓i as the observability predicate of the initial node and ↓o as the
observability predicate of the final node. The observability predicates are thus the
invariants of the π-calculus processes. If a lazy soundness annotated π-calculus
process D ∼o

i,o SLAZY , the corresponding process graph P of D must then be
lazy sound. !

Algorithm 4 (Deciding Lazy Soundness). We describe an algorithm
for deciding lazy soundness of a structural sound process graph mapped to π-
calculus processes.

1. Map the structural sound process graph to π-calculus processes, following
Algorithm 1.

2. Annotate the π-calculus processes for lazy soundness, following Algorithm
3.

3. Check the annotated definition for weak open bisimulation equivalence with
SLAZY concerning ↓i and ↓o. !

This algorithm has already been implemented and will be discussed in the next
section.

6 Tool Support and Discussion

This section evaluates how the theoretical results achieved can be applied and
verified using existing tools such as Mobility Workbench (MWB), Advanced
Bisimulation Checker (ABC), or Open Bisimulation Checker (OBC) for deciding
weak open bisimulation equivalence on π-calculus processes [19,20,21].

6.1 Tool Integration

To be able to integrate these tools into our theoretical framework, we have
created a tool chain consisting of several scripts. The first script is written in

Investigations on Soundness Regarding Lazy Activities 11

Definition 13 (Lazy Sound). A structural sound process graph P = (N,E, T,
A) is lazy sound if and only if:

1. The final node No must be semantically reachable from every node n ∈ N
semantically reachable from the initial node Ni until No has been executed.

2. The final node No is executed exactly once. !

Definition 13 states that a lazy sound process graph representing a business
process is deadlock and livelock free as long as the final node has not been
executed (13.1). Once the final node has been executed, other nodes might still
be or become executed, however they do not semantically reach the final node
again (13.2).

To be able to trace the transition sequences required for semantics reachabil-
ity, we annotate the π-calculus mapping of a process graph with two observability
predicates ↓i, and ↓o. Using these predicates, we can observe the execution of
the initial activity by ↓i, and the final activity by ↓o.

Algorithm 3 (Lazy Soundness Annotated π-calculus Process). To
annotate a π-calculus process representing a process graph for reasoning on lazy
soundness, we need to fill the holes, i.e. [·] ,of the process definitions with:

– τ , if the the corresponding process graph node has incoming and outgoing
edges,

– i.τ , if the corresponding process graph node has only outgoing edges,
– τ.o, if the corresponding process graph node has only incoming edges, and
– i.τ.o if the corresponding process graph node has no incoming or outgoing

edges. !

An example can be found in Example 4. Due to the fact of being able to
observe the initial and the final activity, we can prove lazy soundness for process
graphs. Thus, for every activity reachable after the initial activity has been
observed, we must always be able to observe the final activity exactly once if
the process graph if lazy sound. If we observe the final activity more then once
or never at all, the process graph contains a deadlock or livelock. We derive
this theorem by constructing the smallest lazy soundness annotated π-calculus
mapping of a process graph and prove it to be lazy sound.

Lemma 4. SLAZY = i.τ.o.0 with the observability predicates ↓i and ↓o is the
smallest lazy soundness annotated π-calculus mapping of a process graph satis-
fying lazy soundness.

Proof (Lemma 4). The proof consists of two parts. We first show that SLAZY is
the smallest lazy soundness annotated π-calculus of PMIN . Secondly, we prove
that SLAZY is lazy sound by constructing all transitions.

1. Direct proof. SLAZY is the smallest lazy soundness annotated π-calculus
mapping of PMIN . It has exactly one node denoted by τ and no pre- or
postconditions. The initial node is exactly the final node, denoted by i before
and o after τ .



Conclusion

17



Conclusion

18

• New kind of soundness supporting „lazy“ 
activities

• Algorithms already implemented in 
prototypic tool chain

• First approach utilizing pi-calculus for 
soundness



Thank you!

19


