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A business process containing Discriminator, N-out-of-M, or Multiple 
Instances without Synchronization patterns (called the critical patterns), 
such as
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A, B, and C represent three web service 
interactions.

After two of them have completed, D is 
executed and thereafter the process is 
finished.

However, one of the activities is still active, and clean-up 
work like payment and documentation has to be done.

As the remaining activity contradicts the soundness definition, we can 
not use existing tools to verify the sample business process. Still, 
automated verification regarding deadlocks and livelocks is quite 
important even if you employ one of the critical patterns in your 
business process.

Lazy Soundness proves business processes 
containing the critical patterns (and all others) to 
be free of deadlocks and livelocks. Technically, it 
abstracts from all internals of the process and 
just considers the initial and final node. The 
abstracted process is verified using bisimulation 
techniques.

Demo Presentation:

Thursday, Sep 7 10:30am, Room EI10 

Lazy soundness has been implemented in a prototypical tool chain at 
our research group. We provide a graphical editing of business 
processes using BPMN, automatically formalize BPM diagrams into pi-
calculus expressions, and use existing tools to decide lazy soundness 
for a given business process.

The theoretical background of Lazy Soundness will be presented on 
Tuesday, September 5 16:30am, Room EI9.



Mapping Graphical 
Notations

¥The Pi-Calculus can be used as a formal 
foundation for graphical notations; e.g.

¥UML Activity Diagrams

¥BPMN

¥Allows for the execution, monitoring, and 
analysis of these ÒinformalÓ notations
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BPMN2Pi Mapping Steps 
(Single Pools)

¥Assign all ßow objects an unique Pi-
Calculus agent identiÞer

¥Assign all sequence ßows an unique Pi-
Calculus name

¥ÒExtendÓ the Pi-Calculus agents 
corresponding to the Workßow patterns
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BPMN Example (1)
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Event-based Rerouting
(Simple Version)
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A = (vcheck)(A1|A2)
A1 = ! A.check(v).[v = !]b.0

A2 = i rE.c.check〈⊥〉.0 + check〈$〉.0
B = b.! B .B ′

C = c.τC .C
!
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BPMN Example (2)
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Choreographies

¥Formalized business processes can be 
combined to choreographies

¥Questions:

¥How to represent message ßows?

¥How to represent dynamic binding?

¥How to represent correlations?
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Dynamic Binding and 
Correlations

¥Idea: 

¥Pi-Calculus names are used to represent 
message ßows between a number of 
processes

¥A combination of link passing mobility and 
scope extrusions realizes dynamic binding 
directly



Correlations

¥A can invoke B several times

¥Correlations managed by the restricted 
name ch:

Chapter 6

Interactions

In this chapter we discuss how a set of distributed business processes can synchronize and com-
municate based on interaction flows. Therefore all participating process graphs are placed inside
an interaction graph that is complemented with interaction flow. Due to link passing mobility
of the π-calculus not all interaction flows have to be statically pre-defined, but furthermore can
be created dynamically. Possible patterns given by the service interaction patterns for realizing
interactions between process graphs are discussed. Finally, we introduce reasoning on interac-
tion soundness for a given process graph and a set of services, as well as interaction equivalence
between services.

6.1 Representation

This section describes how distributed, interacting business processes are formally represented
in the π-calculus.

6.1.1 Correlations and Dynamic Binding

A common task between processes invoking other processes is matching the response. This
matchmaking is done using correlations that relate a response with a request. Usually, some
kind of correlation identifier is placed inside each request and response. The invoking as well as
the responding process have to take care of correlating the requests based on the identifiers. In
the π-calculus, the unique identifier of a request is represented by a restricted name. Since names
are unique and can be used as interaction channels, a clear representation of the correlations is
straightforward. Consider for instance the interacting business processes represented by the
agents A and B:

A
def= νch b〈ch〉.(ch(r).A! | A) and B

def= νr b(ch).(τ.ch〈r〉.0 | B) .

Agent A is able to invoke B several times via b, even before a first response is received. B in
turn is able to process multiple request initiated via b at the same time. Hence, matching requests
and responses have to be correlated. This is done by utilizing ch in A as a correlation identifier.
Since ch is unique for each recursive execution of A, the matchmaking is done implicitly via ch .
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Send Interaction 
Pattern

¥Send:

¥Static binding:

¥Dynamic binding:

CHAPTER6. INTERACTIONS 135
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Figure6.3: Singletransmissionbilateralinteractionpatterns.

ThedeÞnitionof anenvironmentagentE for a certainagentS representinga servicegraph
statesthatS might have the possibility to interactwith E. Accordingto deÞnition103 (Envi-
ronment),thismeansthatat leastoneinteractionedgeof S representedby thesetof freenames
of S is utilized. Wecannow statehow S is formally uniÞedwith E, i.e. S ! E:

SYS def= ν(fn(S) ∪ fn(E)) (S | E) . (6.1)

TheuniÞcationof a agentS representinga servicegraphandanenvironmentagentE is given
by theparallelcompositionof S andE aswell asrestrictingthefreenamesof S andE.

6.2 Interaction Patterns

After having introducedthe principlesof interactionsin the π-calculus,we investigate how
commonpatternsof interactioncanbe representedin differentprocess,interaction,or service
graphstructures.In particular, we investigate the serviceinteractionpatternsasdescribedin
[24]. To give a moreelaboratepresentationof the patterns,we utilize the BPMN notationas
introducedin chapter3.3.1. Example5 (Partly Mappingof a BPD to a ProcessGraph)shows
how this notationcanbemappedto processgraphs.Thedescriptionof theserviceinteraction
patternshasbeenadaptedto matchtheterminologyusedthroughoutthis thesis.

6.2.1 Single Transmission Bilateral Interaction Patterns

Thesingletransmissionbilateralinteractionpatternsrepresentbasicinteractionbehavior. Graph-
ical representationsareshown in Þgure6.3.

Pattern 50 (Send) Description: A process sends a message to another process. (According
to [24, p.4])
Implementation: A graphicalrepresentationof this patternis shown in Þgure6.3(a). The π-
calculusmappingimplementsa reliabledeliverywith ablockingsemanticsasfollows:

A
def= 〈·〉.ch〈msg〉.0 .
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The implementationof pattern50 (Send)doesnot show how A actuallyacquiresthename
ch. If aninteractionbetweenA andacompositionof otheragentsE is deÞnedas

I
def
= νch (A | E) ,

astaticbindingis described.If it is deÞnedas

I
def
= νlookup (lookup(ch).A | E) ,

with E being able to communicatea nameusedfor interactionwith a certaincomponentof
itself via lookup, a dynamicbindingis described.If anunreliablemessagetransmissionshould
bemodeled,anagentactingasa proxy betweenA andtheenvironmenthasto beadded(here
with staticbinding):

I
def
= νch (A | B | E) ,

with B given by B
def
= ch(x).B. Due to the non-determinismscontainedin I, interactions

via ch cannow becaptured by B, thusproviding anunreliabledelivery. Theseconsiderations
on staticvs. dynamicandreliablevs. unreliablemessagetransmissionhold for the remaining
interactionpatternsaswell.

Pattern 51 (Receive) Description: A process receives a message from another process.
(According to [24, p.5])
Implementation: A graphicalrepresentationof this patternis shown in Þgure6.3(b). Theπ-
calculusmappingimplementsa reliablereceptionwith ablockingsemanticsasfollows:

A
def
= ch(msg).〈·〉.0 .

Pattern 52 (Send/Receive) Description: A process X engages in two causally related inter-
actions. In the first interaction X sends a message to another process Y (the request), while in
the second one X receives a message from Y (the response). (According to [24, p.7])
Implementation: A graphicalrepresentationof this patternis shown in Þgure6.3(c). The π-
calculusmappingimplementsa reliableinteractionwith ablockingsemanticsasfollows:

I
def
= νch1 (X | Y ) with X

def
= νx1 (A | B), andY

def
= νy1 (Q | R) .

Thecomponentsof X aregivenby:

A
def
= νch2 νmsg 〈·〉.ch1 〈ch2 ,msg〉.x1 〈ch2 ,msg〉.0

and
B

def
= x1 (ch2 ,msg).ch2 (resp).〈·〉.0 .

Thecomponentsof Y aregivenby:

Q
def
= ch1 (ch2 ,msg).〈·〉.y1 〈ch2 ,msg〉
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Tool support

12

¥BPMN to pi-calculus mapper

¥Graphical pi-calculus simulator optimized 
for the BPM domain (PiVizTool)

¥Reasoners
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tool chain, further described in [13]. This tool chain exports business processes modeled

in BPMN[3] to an intermediate XML format, checks the business process diagram (BPD)

for structural soundness and converts the diagram to π-calculus agents. The algorithm
used for the conversion can be found in [15].

Solving the second problem of lacking tool support for π-calculus simulation is the aim
of the tool presented in this paper. To ease the modeling of π-systems for simulation as
input for this tool, the ASCII output produced by the converter tool mentioned above, can

be used.

3 π-Calculus Simulation

Besides the functionalities provided by the MWB and ABC tools, a functionality for ad-

vanced simulation of the evolution of π-calculus systems is desirable. Advanced simula-
tion in this context means to be presented with a visual representation of the π-calculus
system, being able to interactively select reductions of the monitored π-calculus system
to take place in the next step and being presented with an updated snapshot of the linking

structure of the system after each step with the possibility to select the next one. Such

simulation functionality is implemented by the PiVizTool. Its architecture is depicted as

a block diagram of the Fundamental Modeling Concepts (FMC)[7] notation in figure 2.

Rectangle shapes in this notation represent actors, being able to communicate with each

other and rounded shapes represent storages, that can be read or written to by actors.
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Figure 2: Architecture of the PiVizTool

PiVizTool
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VeriÞcation

¥Formalized business processes can be 
checked according to 

¥Different kinds of soundness

¥Compatibility

¥Conformance

15



Reasoning about Soundness 
using Bisimulation Equivalences

16

¥Idea:

¥Use bisimulation to prove invariants of 
the formalized BPDs

¥Invariants are denoted as ãtrivialÒ agents

¥Question:

¥Where to start?



Observables

¥What can we observe?

¥Reductions

¥Intra-actions

¥Internal actions

¥Interactions with the environment?

¥Start Event, End Event, Service Invocations?

17



Action Semantics

¥WeÔre interested in observing ãcertainÒ names:

¥All free names of a system

¥These can interact with the environment via 
matching input and output preÞxes not contained 
in the system

¥Requires a different semantics with a labeled 
transition system

18



30 On the Application of a Theory for Mobile Systems to Business Process Management
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Figure 2.2: Flow graphs.

Nodes are denoted as circles with the name of the agent inside, where a hierarchical order
might be kept (i.e. agents consisting of more than one component might be collapsed or ex-
panded). Circles representing agents are connected using lines, where a dotted end denotes the
target node. A line is drawn from each agent containing an output prefix as the source node to
another agent containing a matching input prefix as the target node. Bound names are written
inside the circle that represents the corresponding agent, as near as possible to the connecting
edge. Free names are written as labels along the edges. Another example is given in figure
2.2(b), this time with vx (P | Q) | R given by

P
def= x〈a〉.P ′, Q

def= x(z).Q′, and R
def= a(u).R′ .

Figure 2.2(c) shows a system composed of three agents before and after an interaction. The
corresponding agents are given by

P
def= b(z).0 + x〈a〉.P ′, Q

def= x(y).Q′, and R
def= a〈.〉R′ ,

where only P and Q are interacting and evolve to P ′ and Q′. In all cases, it is possible to
only show important names and agents. For instance, P can behave as shown, but additionally
includes the name b as an input prefix that is not contained in the flow graph.

2.2.5 Action Semantics

The semantics of the π-calculus as applied throughout this thesis is given by a labeled transition
system that relies on structural congruence to minimize the transition relations.

Definition 6 (Labeled Transition System) A labeled transition system is a three–tuple (S, T,
t→

):

• S is a set of states,

• T is a set of transition labels, and

• t→⊆ S × S is a transition relation for each t ∈ T . !
The set of states is given by the grammar according to equation 2.2. The set of transition

labels, called actions, is derived from the prefixes.

Definition 7 (Actions) The actions α of the π-calculus are given by:

α ::= x〈y〉 | x(y) | x〈vz 〉 | τ ,

The LTS Actions
19



Bisimulation

¥Let P and Q be two related agents. If P can 
evolve to P', then also Q must be able to 
evolve to Q' such that P' and QÔ are again 
related. If the same holds for the opposite 
direction, starting from Q, the two agents 
are called bisimilar or bisimulation 
equivalent. 

20



Weak Bisimulation

¥A weak bisimulation relates more agents by stating 
that an action of P can be weakly mimicked by Q 
(and vice versa):

¥If P has an action alpha, then also Q has an action 
alpha enclosed in sequences of tau 

¥The length of the tau sequences can be zero (i.e. it 
includes the previous deÞnition) 

21



Structural Soundness

¥According to the deÞnition of a workßow 
net:

¥A business process is structural sound if

¥there exists exactly one initial node,

¥there exists exactly one Þnal node, and

¥each node is on a path in between initial 
and Þnal node.

22



Lazy Soundness

¥Key concept:

¥Each structural sound business process 
should always be able to deliver the 
result, regardless of the internal actions

¥Invariant:

23

SLAZY
def
= i.τ.o.0



Observation of Lazy 
Soundness

¥Idea: Observation of the Start and End-
Events:

¥Questions:

¥Waited long enough?

¥Captured all possibilities?

24
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Black Box

Start Done

Structural 
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Graph

Figure5.11:Blackbox investigationof astructuralsoundprocessgraph.

blackbox with a pushbuttonanda bulb. Thepushbuttonis usedto starta new processinstance,
whereasthebulb denotesthesuccessfulendof theprocessinstance.Thepushbuttoncorresponds
to theexecutionof theinitial nodeof thecontainedprocessgraph,whereasthebulb denotesthe
executionof theÞnalnode. Eachtime the initial nodeis executedby pressingthepushbutton,
theobserver shouldseetheexecutionof theÞnalnodeexactly onceat a laterpoint in time by
a ßashof the bulb. If the observer cannotalwaysobserve the executionof the Þnalnode,the
processgraphmusthave seriouserrorsleadingto deadlocksor livelocks. If the Þnalnodeis
executedmorethanonce,theobserver is unableto detectwhentheprocessinstancehasended.
Bothobservationsareadesiredcorrectnesspropertyfor businessprocesses.They guaranteethat
onceabusinessprocessis startedit will alwaysdelivera result.

Theblackbox veriÞcationcloselyresemblestheÞrstcriterionof deÞnition47 (Sound). It
statesthataworkßow nethastheoptionto alwayscomplete:

∀M (i ∗−→ M) ⇒ (M ∗−→ o) .

Themaindifferenceis givenby thefactthatthePetrinetbasedsoundnessdeÞnitionis basedon
states,whereaswe would like to observe theoccurrenceof nodes.Similar to thegivencriterion
is our aim of capturingall possiblestatesthat canoccurin betweenthe startandthe endof a
businessprocess.However, theblackbox veriÞcationdoesnot considerthesecondcriterionof
soundness:

∀M (i ∗−→ M ∧M ≥ o) ⇒ (M = o) .

This is dueto the fact that theexternalobserver doesnot have any knowledgeaboutthenodes
executedinsidetheblackbox. Hence,hecannotdecideif furtheractionsoccurinsidetheblack
box. Thesameholdsfor thethird criterionof soundness:

∀t∈T∃M,M ! i
∗−→ M

t−→ M ′ .

Again, sincetheexternalobserver hasno knowledgeaboutthenodesexecutedinsidetheblack
box,hecannotjudgeif all of themparticipatein thebusinessprocess.

Due to the lack of supportingotherobservationsbesidethe executionof the initial andÞ-
nal node,the black box veriÞcationprovidesa weaker soundnesspropertythandeÞnition47
(Sound)andthesubsetgivenby deÞnition56 (WeakSound).It alsomissesdeÞnition48 (Re-
laxed Sound),sinceequalto criterion threeof soundness,observationsregardingthe executed
nodesarerequired.In particular, theblackbox veriÞcationapproachgivesraiseto deadnodes
insidebusinessprocesses(asforbiddenby thesecondsoundnesscriterion)aswell asallowing
nodesto be active after the Þnalnodehasbeenreached(asforbiddenby the third soundness
criterion).



Proving Lazy Soundness

¥Lazy soundness can be proved:

¥Map the corresponding business process 
to agents

¥Annotate the agents representing the 
initial and the Þnal node with ãiÒ or ãoÒ 
accordingly

¥Decide weak bisimulation equivalence 
between S_LAZY and the mapping 

25



Notes
¥Lazy Soundness does not coincidence with existing 

soundness properties

¥Allows activities to be active after the Þnal node has 
been reached!

¥These are called clean-up, or lazy activities

¥Dead activities might be contained

¥Requires the distinction between the point in time 
where a business process delivers the result vs. the 
moment it terminates

26



Example
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Existing Soundness 
Properties

¥ Weak Soundness:

¥ The delivery of the result denotes the termination of the 
business process

¥ Invariant:  The Þnal activity is observed exactly once, and 
no other activity can be observed after the Þnal node

¥ Relaxed Soundness:

¥ All activities participate in the business process

¥ Invariant: Each activity can be observed at least once
28



Extension of the Black 
Box

¥The black box has to be extended:

¥Bisimulation used for weak soundness (must)

¥Simulation for relaxed soundness (can)

¥Soundness is a combination of weak/relaxed sound

29
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Enhanced Black Box

Start DoneStep
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Graph

Figure 5.12: Enhanced black box investigation of a structural sound process graph.

1. Map the structural sound process graph to ! -calculus, following algorithm 1.

2. Annotate the ! -calculus mapping for lazy soundness, following algorithm 3.

3. Check the annotated mapping for weak bisimulation equivalence with SLA ZY .

4. If the equivalence holds, P is lazy sound. !

Appendix A.1.1 shows how example 7 (Simple Business Process Formalization) is proven
to be lazy sound using existing tools.

5.3.3 Weak Soundness

After the investigation of lazy soundness, which provides a soundness property closely related
to the first criterion of soundness (definition 47), we would like to mimic the second criterion
using bisimulation:

∀M (i ∗−→M ∧M ≥ o) ⇒ (M = o) .

The criterion states that the termination and the end of a process instance are the same by en-
forcing that after the state o no other state can follow. Hence, no lazy activities are allowed in a
business process. As already motivated, this behavior can only be guaranteed by observing the
execution of the nodes inside the black box. In contrast to the Petri net based definition given
above, that enumerates all states, we are reducing the investigation to the activities found in a
business process. After the activity that is represented by the final node has been executed, no
other activities should be or become active. Since the first and the second criterion of soundness
are the same as weak soundness, we denote this property also as weak soundness. Informally, it
guarantees the following properties of a business process:

A process graph representing a business process is weak sound if in any case a result
is provided and the moment the result is provided, the business process terminates.

Due to the immediate termination of the business process, no lazy activities can remain. Further-
more, the result can only be provided once. For proving weak soundness, we need to be able to
observe the occurrence of nodes. If we can only observe the occurrence of nodes in between the
observation of the initial and the final node, we can be sure that the business process is termi-
nated at the moment the result is provided via the final node. An enhanced black box is shown
in figure 5.12.

The external observer starts a new instance of the structural sound process graph given into
the enhanced black box with a push of the start button. Thereafter he observes a flash of the step



Further VeriÞcation

¥Compatibility:

¥Lazy soundness can be extended to ãInteraction 
SoundnessÒ representing a compatibility notion 
with support for dynamic binding

¥Conformance:

¥Bisimulation can be used as a conformance notion

30



The End.
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