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A business process containing Discriminator, N-out-of-M, or Multiple 
Instances without Synchronization patterns (called the critical patterns), 
such as
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A, B, and C represent three web service 
interactions.

After two of them have completed, D is 
executed and thereafter the process is 
finished.

However, one of the activities is still active, and clean-up 
work like payment and documentation has to be done.

As the remaining activity contradicts the soundness definition, we can 
not use existing tools to verify the sample business process. Still, 
automated verification regarding deadlocks and livelocks is quite 
important even if you employ one of the critical patterns in your 
business process.

Lazy Soundness proves business processes 
containing the critical patterns (and all others) to 
be free of deadlocks and livelocks. Technically, it 
abstracts from all internals of the process and 
just considers the initial and final node. The 
abstracted process is verified using bisimulation 
techniques.

Demo Presentation:

Thursday, Sep 7 10:30am, Room EI10 

Lazy soundness has been implemented in a prototypical tool chain at 
our research group. We provide a graphical editing of business 
processes using BPMN, automatically formalize BPM diagrams into pi-
calculus expressions, and use existing tools to decide lazy soundness 
for a given business process.

The theoretical background of Lazy Soundness will be presented on 
Tuesday, September 5 16:30am, Room EI9.
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Foundations

• The Formalization of Workflow Patterns is 
based on ECA rules
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ECA Rules

• ECA rules from active databases:

• (on) Event, 

• (if) Condition, 

• (then) Action

• Different Coupling Modes

• Different Triggers
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Example: ECA rule
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ON inserting a row in course registration table

IF over course capacity

THEN abort registration transaction
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Example: ECA Conflicts
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ON inserting a row in course registration table

IF over course capacity

THEN notify registrar about unmet demands

ON inserting a row in course registration table

IF over course capacity

THEN put on waiting list
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Business Rule Enforced with 
AFTER trigger
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CREATE TRIGGER LimitSalaryRaise
! AFTER UPDATE OF Salary ON Employee
! REFERENCING OLD AS 0, NEW AS N
! FOR EACH ROW
! WHEN (N.Salary - O.Salary > 0.05*O.Salary)
! ! UPDATE Employee
! ! SET Salary = 1.05 * O.Salary
! ! Where Id = O.Id
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Event-based Routing

• The ECA approach has been adapted to 
workflows:

• 1 Event

• m Conditions

• n Actions
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ECA Notation
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ECA Sequence Flow
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ECA Parallel Flow
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ECA Choice
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Mapping Workflow 
Activities to Agents

• Each workflow activity is mapped to a 
concurrent pi-calculus agent:

• Each agent has pre- and post-conditions

• Pre-condition = Event and Condition

• Postcondition = Action
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Basic Activities in the Pi-Calculus
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x.[a = b]τ.y.0
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Basic Control Flow 
Patterns
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• The basic control flow patterns capture 
elementary aspects of control flow
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Sequence
15

A B
b A = τA.b.0

B = b.τB .B
′
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Parallel Split
16
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A = τa.(b.0|c.0)
B = b.τB .B

′

C = c.τC .C
′
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Synchronization
17
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Exclusive Choice
18
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Simple Merge
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Advanced Branching and 
Synchronization Patterns

• The advanced branching and 
synchronization patterns require advanced 
concepts and map only partly to the basic 
activity template
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Multiple Choice
21
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A = (vexec)τA.(A1|A2)

A1 = exec〈b〉.0+

exec〈b〉.exec〈c〉.0
exec〈c〉.0+

A2 =!exec(x).x.0

B = b.τB .B
′

C = c.τC .C
′
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Synchronizing Merge
22
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Multiple Merge
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d B = τB .d.0

C = τC .d.0

D =!d.τD.D
′
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Discriminator
24
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D = (vh, exec)(D1|D2)
D1 = d1.h.0 | d2.h.0 | d3.h.0

D2 = h.exec.h.h.D | exec.τD.D
′

C = τC .d3.0B = τB .d2.0A = τA.d1.0
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Discriminator Template
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D = (vh, exec)((
m∏

i=1

di.h.0) | h.exec.{h}m−1

1
.D | exec.τD.D′)
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N-out-of-M-Join Template
26

D = (vh, exec)((
m∏

i=1

di.h.0) | {h}n
1 .exec.{h}m

n+1.D | exec.τD.D′)
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Structural Patterns

• Structural patterns show restrictions on 
workflow languages

27
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Arbitrary Cycles
28

A B C D
b c d

a

A =!a.τA.b.0

B =!b.τB .c.0

C =!c.τC .(a.0 + d.0)
D = d.τD.D

′
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Implicit Termination
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• The implicit termination pattern terminates 
a sub-process if no other activity can be 
made active

• Problem: Most engines terminate the 
whole workflow if a final node is reached

• The pi-calculus contains the final symbol 0
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Multiple Instance 
Patterns

• Multiple instance patterns create several 
instances (copies) of workflow activities
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MI without Synchronization
31

A B
b * A = τA.!b.0

B =!b.τB .B
′
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MI with a priori Design Time 
Knowledge

32

A B
b * C

c

A = τA.b.b.b.0

B =!b.τB .c.0

C = c.c.c.τC .C
′

A | B | C ≡ τA.{b}n
1 .0 | !b.τB .c.0 | {c}n

1 .τC .C
′
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MI without a priori Runtime 
Knowledge

33

A B
b * C

c

A = τA.A1(c)

A1(x) = (vy)b〈y〉.y〈x〉.A1(y) + x.0

B =!b(y).y(x).τB .y.x.0

C = c.τC .C
′

The pattern works like a dynamic linked-list:
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MI with a priori Runtime 
Knowledge

34

A B
b * C

c

A = (vrun)τA.A1(c) | run.!start.0

A1(x) = (vy)b〈y〉.y〈x〉.A1(y) + run.x.0

B =!b(y).y(x).start.τB .y.x.0

C = c.τC .C
′
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State-based Patterns

• State-based patterns capture implicit 
behavior of processes that is not based on 
the current case rather than the 
environment or other parts of the process

35
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Deferred Choice
36
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c

b
env

c
env

B = b.(benv.kill.τB .B
′ + kill.0)

C = c.(cenv.kill.τC .C
′ + kill.0)

A = τA.(b.0|c.0)
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Interleaved Parallel Routing
37

A = τA.x.y.x.y.A′

B = x.τB .y.0

C = x.τC .y.0A C
c

B
b

A B
b

C
c
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Milestone
38

A = check(x).([x = !]τA1.A
′ + [x = ⊥]τA2.A

′′)

B = M(⊥) | b.m 〈#〉 .τB .m 〈⊥〉 .B
′

M(x) = m(x).M(x) + check 〈x〉 .M(x)



(C) 2007 Frank Puhlmann

Cancelation Patterns

• The cancelation patterns describe the 
withdrawal of one or more processes that 
represent workflow activities

39
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Cancel Activity
40

A | E ≡ a.τA.A
′ + cancel.0 | !τE .cancel.0
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Cancel Case

41

• The cancel case pattern cancels a whole 
workflow instance

• This is equal to Cancel Activity with the 
exception that all remaining processes 
receive a global cancel trigger



Data Representation

42
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Memory Cell
43

CHAPTER 4. DATA 60

To allow a unique availability of all components of P to all components of Q, i.e. they can
interact conflict-free, we assume the following properties to hold:

1. The free names of all components of P are unique, formally fn(Pi) ∩ fn(Pj) = ∅ for all
i, j with 0 < i < n ∧ 0 < j < n ∧ i $= j.

2. Free names of P can occur as either (1) subjects of input prefixes in Q or (2) as arbitrary
objects of output prefixes in Q, i.e. no component of Q provides a functionality via the
same free names as P . !

The free names of an agent representing a structure, value, or function are then used to access
its functionality.

4.1.1 Basic Structures

Basic structures provide elementary grouping and accessing features to names. Each basic struc-
ture has a simple interface consisting of an accessor name for adding and removing names. Any
count of names can be sent to an accessor name by using it as an output prefix and retrieved
afterward by using it as an input prefix. We distinguish three types of return possibilities: (1)
only the last name, or the last sequence of names (ñ) is returned infinite times (e.g. cell, pair),
(2) the last name sent is the first name returned (stack), or (3) the first name sent is the first name
returned (queue). For b and c we require an additional name that is triggered when the structure
is empty.

The basic structures are defined in the following paragraphs. Each basic structure is globally
available to other agents inside a system and can produce a copy of itself via recursion.

Definition 4.1 (Cell) A cell holds a name and allows read and write operations to retrieve or
change the content:

CELL def= νc cell〈c〉.(CELL1 (⊥) | CELL)

CELL1 (n) def= c〈n〉.CELL1 (n) + c(x).CELL1 (x) .

A new cell is initialized with the default name⊥ (false). The restricted name retrieved by reading
via the name cell is then used as read and write accessor to the cell’s content. !

For instance, consider the agents

A
def= νd cell(c).c〈d〉.b〈c〉.0 and B

def= b(p).p(x).τ.0

inside a system
S

def= νcell ν⊥ νb (A | B | CELL) .

Agent A first creates a restricted name d and retrieves a fresh cell c. Afterward the name d is
stored inside the cell via c, and the name c is sent via b. Agent B receives the name of the cell via
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Pairs, Tuples
44

CHAPTER 4. DATA 61

b and afterward retrieves the content. A cell can be easily extended to a pair, storing a sequence
of two names:

Definition 4.2 (Pair) A pair holds a sequence of two names and allows read and write opera-
tions to retrieve or change the content:

PAIR def= νt pair〈t〉.(PAIR1 (⊥,⊥) | PAIR)

PAIR1 (m,n) def= t〈m,n〉.PAIR1 (m,n) + t(x, y).PAIR1 (x, y) .

!
A new pair is initialized and accessed similar to a cell. Furthermore, we define an agent

TRIPLE holding a sequence of three names according to PAIR (omitted). By employing pairs
and triples, more advanced data structures can be created. We investigate stacks and queues.

Definition 4.3 (Stack) A stack stores names that can be removed in reverse order; i.e. first in,
last out. Names can be contained in the stack several times. The stack consists of two operations,
push to add names to and pop to remove names from the stack. The stack presented here is based
on two assumptions. (1) The push operation can be called infinite times; i.e. there is no upper
limit on the size of the stack, and (2) the pop operation can be called as long as there are elements
on the stack. If the stack size is zero, the special name empty can be read infinite times instead.
These assumptions simplify the definition of the stack without restricting its expressive power.
The stack is given by:

STACK def= νs νempty stack〈s, empty〉.(STACK0 | STACK ) .

STACK first creates two restricted names: s, used as an accessor name for push and pop oper-
ations, and empty, used to represent the empty stack. It then behaves as follows:

STACK0
def= empty .STACK0 + s(newvalue).triple(next).

next〈⊥,⊥,newvalue〉.STACK1 (next) ,

where STACK0 either returns empty or receives a name newvalue via s to push on the stack.
In the last case, a new triple is created and initialized with (prev , test , value), where prev rep-
resents the previous triple (⊥ as this is the first triple on the stack), test is a flag if there are more
elements on the stack (also ⊥), and value is the received value.1 If a name has been pushed on
the stack, the agent continues as STACK1 with the current triple as a parameter:

STACK1 (curr) def= curr(prev , test , value).(s〈value〉.
([test = $]STACK1 (prev) + [test = ⊥]STACK0 )+
s(newvalue).triple(next).next〈curr ,$,newvalue〉.
STACK1 (next)) .

1 We explicitly have to denote a name for testing if there are more elements on the stack, as a mismatch operator
(e.g. prev != ⊥) is not contained in the considered π-calculus grammar.
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TRIPLE holding a sequence of three names according to PAIR (omitted). By employing pairs
and triples, more advanced data structures can be created. We investigate stacks and queues.

Definition 4.3 (Stack) A stack stores names that can be removed in reverse order; i.e. first in,
last out. Names can be contained in the stack several times. The stack consists of two operations,
push to add names to and pop to remove names from the stack. The stack presented here is based
on two assumptions. (1) The push operation can be called infinite times; i.e. there is no upper
limit on the size of the stack, and (2) the pop operation can be called as long as there are elements
on the stack. If the stack size is zero, the special name empty can be read infinite times instead.
These assumptions simplify the definition of the stack without restricting its expressive power.
The stack is given by:

STACK def= νs νempty stack〈s, empty〉.(STACK0 | STACK ) .

STACK first creates two restricted names: s, used as an accessor name for push and pop oper-
ations, and empty, used to represent the empty stack. It then behaves as follows:

STACK0
def= empty .STACK0 + s(newvalue).triple(next).

next〈⊥,⊥,newvalue〉.STACK1 (next) ,
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where STACK0 either returns empty or receives a name newvalue via s to push on the stack.
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Stack
45
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b and afterward retrieves the content. A cell can be easily extended to a pair, storing a sequence
of two names:

Definition 4.2 (Pair) A pair holds a sequence of two names and allows read and write opera-
tions to retrieve or change the content:

PAIR def= νt pair〈t〉.(PAIR1 (⊥,⊥) | PAIR)

PAIR1 (m,n) def= t〈m,n〉.PAIR1 (m,n) + t(x, y).PAIR1 (x, y) .

!
A new pair is initialized and accessed similar to a cell. Furthermore, we define an agent

TRIPLE holding a sequence of three names according to PAIR (omitted). By employing pairs
and triples, more advanced data structures can be created. We investigate stacks and queues.

Definition 4.3 (Stack) A stack stores names that can be removed in reverse order; i.e. first in,
last out. Names can be contained in the stack several times. The stack consists of two operations,
push to add names to and pop to remove names from the stack. The stack presented here is based
on two assumptions. (1) The push operation can be called infinite times; i.e. there is no upper
limit on the size of the stack, and (2) the pop operation can be called as long as there are elements
on the stack. If the stack size is zero, the special name empty can be read infinite times instead.
These assumptions simplify the definition of the stack without restricting its expressive power.
The stack is given by:

STACK def= νs νempty stack〈s, empty〉.(STACK0 | STACK ) .

STACK first creates two restricted names: s, used as an accessor name for push and pop oper-
ations, and empty, used to represent the empty stack. It then behaves as follows:

STACK0
def= empty .STACK0 + s(newvalue).triple(next).

next〈⊥,⊥,newvalue〉.STACK1 (next) ,

where STACK0 either returns empty or receives a name newvalue via s to push on the stack.
In the last case, a new triple is created and initialized with (prev , test , value), where prev rep-
resents the previous triple (⊥ as this is the first triple on the stack), test is a flag if there are more
elements on the stack (also ⊥), and value is the received value.1 If a name has been pushed on
the stack, the agent continues as STACK1 with the current triple as a parameter:

STACK1 (curr) def= curr(prev , test , value).(s〈value〉.
([test = $]STACK1 (prev) + [test = ⊥]STACK0 )+
s(newvalue).triple(next).next〈curr ,$,newvalue〉.
STACK1 (next)) .

1 We explicitly have to denote a name for testing if there are more elements on the stack, as a mismatch operator
(e.g. prev != ⊥) is not contained in the considered π-calculus grammar.



CHAPTER 4. DATA 62

The agent STACK1 first retrieves the values (prev , test , value) from the current triple to have
them prepared for immediate response in the case a pop interaction on s occurs as the next
transition. In this case, the value is sent via s. If there are more elements on the stack (test =
!) the agent behaves as STACK1 with prev as a parameter and otherwise as STACK0 . If
an element is added to the stack by using s as a push interaction, a new triple is created and
initialized with (curr ,!,newvalue), where curr represents the current triple (now acting as the
predecessor), ! for signaling that there are more elements on the stack, and newvalue as the
pushed value. The agent then behaves as STACK1 with the newly allocated triple as parameter.

!

Definition 4.4 (Queue) A queue stores names that can be removed in order; i.e. first in, first
out. Names can be contained in the queue several times. The queue consists of two operations,
enqueue to add names to and dequeue to remove names from the queue. The queue presented
here is based on two assumptions. (1) The enqueue operation can be called infinite times; i.e.
there is no upper limit on the size of the queue, and (2) the dequeue operation can be called as
long as there are elements in the queue. If the queue is empty, the special name empty can be
read infinite times. The queue is given by:

QUEUE def= νq νempty queue〈q, empty〉.(QUEUE0 | QUEUE ) .

The queue creates, equal to the stack, two fresh names: q used as an accessor for enqueue and
dequeue operations, and empty, used to represent the empty queue. It then behaves as follows:

QUEUE0
def= empty .QUEUE0 + q(newvalue).triple(newtriple).

newtriple〈⊥,⊥,newvalue〉.QUEUE1 (newtriple,newtriple) ,

where QUEUE0 either returns empty infinite times or receives a name via q to enqueue to the
queue. In the last case, a new triple is created and initialized with (next , test , value), where
next represents the next triple (⊥ as this is the only triple in the queue), test is a flag if there are
more elements in the queue after this one (also ⊥), and value is the received value. If a name has
been enqueued, the agent continues as QUEUE1 with the current triple as an explicit parameter
representing the first and last triple of the queue:

QUEUE1 (first , last) def= first(next , test , value).(q〈value〉.
([test = !]QUEUE1 (next , last) + [test = ⊥]QUEUE0 )+

q(newvalue).triple(newtriple).newtriple〈⊥,⊥,newvalue〉.
last(oldnext , oldtest , oldvalue).last〈newtriple,!, oldvalue〉.
QUEUE1 (first ,newtriple) .

The agent QUEUE1 works analog to the stack with the exception that the queue needs to update
the next pointer of the triple previous to the newly added triple. !
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them prepared for immediate response in the case a pop interaction on s occurs as the next
transition. In this case, the value is sent via s. If there are more elements on the stack (test =
!) the agent behaves as STACK1 with prev as a parameter and otherwise as STACK0 . If
an element is added to the stack by using s as a push interaction, a new triple is created and
initialized with (curr ,!,newvalue), where curr represents the current triple (now acting as the
predecessor), ! for signaling that there are more elements on the stack, and newvalue as the
pushed value. The agent then behaves as STACK1 with the newly allocated triple as parameter.

!

Definition 4.4 (Queue) A queue stores names that can be removed in order; i.e. first in, first
out. Names can be contained in the queue several times. The queue consists of two operations,
enqueue to add names to and dequeue to remove names from the queue. The queue presented
here is based on two assumptions. (1) The enqueue operation can be called infinite times; i.e.
there is no upper limit on the size of the queue, and (2) the dequeue operation can be called as
long as there are elements in the queue. If the queue is empty, the special name empty can be
read infinite times. The queue is given by:

QUEUE def= νq νempty queue〈q, empty〉.(QUEUE0 | QUEUE ) .

The queue creates, equal to the stack, two fresh names: q used as an accessor for enqueue and
dequeue operations, and empty, used to represent the empty queue. It then behaves as follows:

QUEUE0
def= empty .QUEUE0 + q(newvalue).triple(newtriple).

newtriple〈⊥,⊥,newvalue〉.QUEUE1 (newtriple,newtriple) ,

where QUEUE0 either returns empty infinite times or receives a name via q to enqueue to the
queue. In the last case, a new triple is created and initialized with (next , test , value), where
next represents the next triple (⊥ as this is the only triple in the queue), test is a flag if there are
more elements in the queue after this one (also ⊥), and value is the received value. If a name has
been enqueued, the agent continues as QUEUE1 with the current triple as an explicit parameter
representing the first and last triple of the queue:

QUEUE1 (first , last) def= first(next , test , value).(q〈value〉.
([test = !]QUEUE1 (next , last) + [test = ⊥]QUEUE0 )+

q(newvalue).triple(newtriple).newtriple〈⊥,⊥,newvalue〉.
last(oldnext , oldtest , oldvalue).last〈newtriple,!, oldvalue〉.
QUEUE1 (first ,newtriple) .

The agent QUEUE1 works analog to the stack with the exception that the queue needs to update
the next pointer of the triple previous to the newly added triple. !
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The agent STACK1 first retrieves the values (prev , test , value) from the current triple to have
them prepared for immediate response in the case a pop interaction on s occurs as the next
transition. In this case, the value is sent via s. If there are more elements on the stack (test =
!) the agent behaves as STACK1 with prev as a parameter and otherwise as STACK0 . If
an element is added to the stack by using s as a push interaction, a new triple is created and
initialized with (curr ,!,newvalue), where curr represents the current triple (now acting as the
predecessor), ! for signaling that there are more elements on the stack, and newvalue as the
pushed value. The agent then behaves as STACK1 with the newly allocated triple as parameter.

!

Definition 4.4 (Queue) A queue stores names that can be removed in order; i.e. first in, first
out. Names can be contained in the queue several times. The queue consists of two operations,
enqueue to add names to and dequeue to remove names from the queue. The queue presented
here is based on two assumptions. (1) The enqueue operation can be called infinite times; i.e.
there is no upper limit on the size of the queue, and (2) the dequeue operation can be called as
long as there are elements in the queue. If the queue is empty, the special name empty can be
read infinite times. The queue is given by:

QUEUE def= νq νempty queue〈q, empty〉.(QUEUE0 | QUEUE ) .

The queue creates, equal to the stack, two fresh names: q used as an accessor for enqueue and
dequeue operations, and empty, used to represent the empty queue. It then behaves as follows:

QUEUE0
def= empty .QUEUE0 + q(newvalue).triple(newtriple).

newtriple〈⊥,⊥,newvalue〉.QUEUE1 (newtriple,newtriple) ,

where QUEUE0 either returns empty infinite times or receives a name via q to enqueue to the
queue. In the last case, a new triple is created and initialized with (next , test , value), where
next represents the next triple (⊥ as this is the only triple in the queue), test is a flag if there are
more elements in the queue after this one (also ⊥), and value is the received value. If a name has
been enqueued, the agent continues as QUEUE1 with the current triple as an explicit parameter
representing the first and last triple of the queue:

QUEUE1 (first , last) def= first(next , test , value).(q〈value〉.
([test = !]QUEUE1 (next , last) + [test = ⊥]QUEUE0 )+

q(newvalue).triple(newtriple).newtriple〈⊥,⊥,newvalue〉.
last(oldnext , oldtest , oldvalue).last〈newtriple,!, oldvalue〉.
QUEUE1 (first ,newtriple) .

The agent QUEUE1 works analog to the stack with the exception that the queue needs to update
the next pointer of the triple previous to the newly added triple. !
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4.1.2 Iterators

An iterator iterates through a data structure. We distinguish two types of iterators, destructive
and non-destructive. Destructive operators remove the elements from the structure, whereas
non-destructive iterators keep the elements in the structure.

Definition 4.5 (Iterator) An destructive iterator that works on stacks and queues is defined by:

I
def= s(x).τI .I + empty .I ′ .

The iterator works on a structure s. While there are elements available in the structure, the left
hand side of the iterator is chosen. The work done with the current element is here denoted as
τI . If the basic structure returns empty, the iterator finishes. !

A non-destructive iterator needs to have knowledge about the data structure it iterates. Since
this might cause problems related to concurrent access, special care has to be taken when em-
ploying these iterators. A trivial non-destructive iterator for a stack uses a temporary stack to
store the values:

IS def= stack(tmpstack , tmpempty).IS0

IS0
def= s(x).tmpstack〈x〉.τIS0 .IS0 + empty .IS1

IS1
def= tmpstack(x).s〈x〉.IS1 + tmpempty .IS ′ .

In agent IS a new temporary stack tmpstack is allocated first. Thereafter, each element from
the original stack s is read and written to the temporary stack. Afterward the content of the
current stack’s value is evaluated insie τIS0 . Once the original stack is empty, agent IS1 restores
the content of the original stack s by iterating over the temporary stack tmpstack . A non-
destructive iterator for queue works accordingly. However, the proposed non-destructive iterator
is not safe in concurrent environments, where the data structure can be accessed in parallel.

Example 4.1 (Bank Counters) An example illustrating the problems is a given by a bank
which has several counters that serve incoming customers according to a first in, first serve prin-
ciple. The formal representation consists of a waiting queue, where new names (i.e. customers)
are enqueued using an agent FILL (i.e. the customers enter the bank building). The waiting
queue is processed by several agents SERVE representing the bank’s counters. A sample sys-
tem is then given as

WQ def= queue(wq ,we).(FILL | SERVE | SERVE ) ,

where two agents SERVE work on elements of the queue added by FILL. Possible implemen-
tations are

FILL def= νt τ.wq〈t〉.FILL and SERVE def= wq(x).τ.SERVE .

By adding a fourth component INSPECT , that searches the waiting queue for a specific name
(i.e. a premium customer), unwanted behavior can occur. The implementation has been adapted
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4.2.1 Booleans and Bytes

The basic unit of data is a bit that is represented as a boolean value.

Definition 4.7 (Boolean) A boolean represents a truth value inside a system of agents. It is given
by

ν! ν⊥ S ,

where ! represents true, ⊥ represents false, and S represents the system of agents. !
For instance, a system S composed of two agents A and B that use boolean values is given

by:

S
def= ν! ν⊥ νch (A | B) ,

A
def= τ.(ch〈!〉.A + ch〈⊥〉.A) , and

B
def= ch(x).([x = !]τ.B ′ + [x = ⊥]τ.0) .

The agent S defines two restricted names representing true and false values as well as an inter-
action channel. The components A and B can then evolve concurrently. However, only A can
evolve immediately, since B has no counterpart for interaction. A does some internal calculation
that is abstracted from by τ and afterward sends either ! or ⊥ via the name ch . In both cases,
A evolves by recursion as originally defined. In the second step of A, an interaction between A
and B is possible. Thus, a possible interaction for B is given by:

ch(x).([x = !]τ.B ′ + [x = ⊥]τ.0)
ch(")−→ [! = !]τ.B ′ + [! = ⊥]τ.0 .

Since ! '= ⊥, only one active transition of the sum remains for B, making it deterministic (B
can execute the left hand side of the sum). If A had sent ⊥ via ch instead, the right hand side of
B would have been enabled for execution. By regarding ch as a pointer, it clearly points to an
agent A, that is able to return either ! or ⊥ an infinite number of times. Consequently, the type
of the name ch can be said to be boolean, since it always points to an agent representing boolean
values in S.

Definition 4.8 (Type) The type of a name n is given by the kind of data an agent able to interact
via n represents. If more complex data can be accessed via multiple names, the names are
subscripted with their corresponding part. !

The type of a name can be denoted with a colon behind the name, e.g. raining : boolean or
patients : queue iterator to make the terms more readable. In contrast to theoretical treatments
such as given in [118], we consider types as purely additional information without any formal
meaning. Thus, the type of a name only denotes what can be expected by using the name as
the object of an input or output prefix. While different agents can interact via the same name,
and a type overloading is also possible, we prohibit this for typed names. In other words, the
type of n defines the codomain of a function that is pointed to by n. An example of a function
represented by an agent is already given by A. This agent is able to emit boolean values in a
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non-deterministic manner; it represents a function that returns random boolean values. Since A
considered as a function does not take any input, its signature is simply given by:

A :→ boolean .

Instead of providing a random boolean generator, two more elaborate agents provide constants
for true and false values:

TRUE = true〈#〉.TRUE FALSE = false〈⊥〉.FALSE .

These agents are assumed to be placed inside a system which restricts true and false as well as
# and ⊥ globally. An agent representing a function with parameters requires a two-way inter-
action. First the parameters and a response channel are transmitted and afterward the response
is read via the response channel. A function AND representing a boolean disjunction with the
signature

AND : boolean × boolean → boolean

that compares two booleans is given by the agent

AND def= and(b1 , b2 , resp).b1 (x).b2 (y).([x = #][y = #]resp〈#〉.AND+
[x = ⊥]resp〈⊥〉.AND+
[y = ⊥]resp〈⊥〉.AND) .

The agent AND is made globally available inside a system using the restricted name and . When
interacting via and , the subject is expected to consist of three parts: two names b1 and b2
representing pointers to booleans, and a third name resp used as a response channel. First,
AND fetches the actual values of the pointers to the booleans. Second, it returns # via resp if
both names b1 and b2 equal #, and ⊥ otherwise. Another system T composed out of

T
def= ν# ν⊥ νtrue νfalse νand (TRUE | FALSE | AND | C) , and

C
def= νr and(true, true, r).r(x).([x = #]τ.C ′ + [x = ⊥]τ.C ′′) ,

with AND , TRUE , and FALSE given as above, uses the concepts introduced so far. However,
the right hand side of agent C’s sum will never be enabled due to the interaction with agent
AND , where two true values are compared. Furthermore, agent AND only provides a one-
time interaction via resp. A better solution for agent AND incorporates the return of a variable
containing the result instead of directly providing it. A variable is represented by a cell.

The modified agent AND is given as follows, where we assume it to be placed inside a
composition with CELL and the restricted names # and ⊥:

Definition 4.9 (Boolean Conjunction) The agent AND compares two names typed as booleans
for boolean conjunction.

AND def= cell(v).and(b1 , b2 , resp).b1 (x).b2 (y).([x = #][y = #]v〈#〉.AND1+
[x = ⊥]v〈⊥〉.AND1 + [y = ⊥]v〈⊥〉.AND1 )

AND1
def= (resp〈v〉.0 | AND) .
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non-deterministic manner; it represents a function that returns random boolean values. Since A
considered as a function does not take any input, its signature is simply given by:

A :→ boolean .

Instead of providing a random boolean generator, two more elaborate agents provide constants
for true and false values:

TRUE = true〈#〉.TRUE FALSE = false〈⊥〉.FALSE .

These agents are assumed to be placed inside a system which restricts true and false as well as
# and ⊥ globally. An agent representing a function with parameters requires a two-way inter-
action. First the parameters and a response channel are transmitted and afterward the response
is read via the response channel. A function AND representing a boolean disjunction with the
signature

AND : boolean × boolean → boolean

that compares two booleans is given by the agent

AND def= and(b1 , b2 , resp).b1 (x).b2 (y).([x = #][y = #]resp〈#〉.AND+
[x = ⊥]resp〈⊥〉.AND+
[y = ⊥]resp〈⊥〉.AND) .

The agent AND is made globally available inside a system using the restricted name and . When
interacting via and , the subject is expected to consist of three parts: two names b1 and b2
representing pointers to booleans, and a third name resp used as a response channel. First,
AND fetches the actual values of the pointers to the booleans. Second, it returns # via resp if
both names b1 and b2 equal #, and ⊥ otherwise. Another system T composed out of

T
def= ν# ν⊥ νtrue νfalse νand (TRUE | FALSE | AND | C) , and

C
def= νr and(true, true, r).r(x).([x = #]τ.C ′ + [x = ⊥]τ.C ′′) ,

with AND , TRUE , and FALSE given as above, uses the concepts introduced so far. However,
the right hand side of agent C’s sum will never be enabled due to the interaction with agent
AND , where two true values are compared. Furthermore, agent AND only provides a one-
time interaction via resp. A better solution for agent AND incorporates the return of a variable
containing the result instead of directly providing it. A variable is represented by a cell.

The modified agent AND is given as follows, where we assume it to be placed inside a
composition with CELL and the restricted names # and ⊥:

Definition 4.9 (Boolean Conjunction) The agent AND compares two names typed as booleans
for boolean conjunction.

AND def= cell(v).and(b1 , b2 , resp).b1 (x).b2 (y).([x = #][y = #]v〈#〉.AND1+
[x = ⊥]v〈⊥〉.AND1 + [y = ⊥]v〈⊥〉.AND1 )

AND1
def= (resp〈v〉.0 | AND) .
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!
In addition to the agent AND introduced earlier, the new variant is not blocking until the

response has been collected, since the modified AND is activated again using recursion placed
in parallel with the response sent via resp. A boolean disjunction is given by:

Definition 4.10 (Boolean Disjunction) The agent OR compares two names typed as booleans
for boolean disjunction:

OR def= cell(v).or(b1 , b2 , resp).b1 (x).b2 (y).([x = ⊥][y = ⊥]v〈⊥〉.OR1+
[x = $]v〈$〉.OR1 + [y = $]v〈$〉.OR1 )

OR1
def= (resp〈v〉.0 | OR) .

!
Finally, a boolean negation is given by the agent NEG :

Definition 4.11 (Boolean Negation) The agent NEG applies boolean negation to a name typed
as boolean.

NEG def= neg(b, resp).true(t).false(f).b(x).(
([b = t]resp〈false〉.0 + [b = f ]resp〈true〉.0) | NEG) .

!
The boolean negation incorporates the TRUE and FALSE agents to first fetch the actual

names for true and false and furthermore returns the result as a constant. Agents 4.9 (Boolean
Conjunction) and 4.10 (Boolean Disjunction) can be adapted to work the same way. We showed
both variants to provide a choice for the application. Usage of the fixed names $ and ⊥ provides
less overhead, whereas the agents TRUE and FALSE provide more flexibility regarding the
actual names for true and false, as well as providing constants for them. In the remainder, we
use the agents TRUE and FALSE as defined, e.g. providing the names $ for true and ⊥ for
false. Thus, a fetching of the actual values for true and false is omitted.

A second unit of data is a byte that is represented by a tuple of eight bits:

Definition 4.12 (Byte) A byte is given by a tuple of eight boolean values used as subjects of
input and outputs prefixes. The type of a byte is byte, e.g. byte42 : byte. !

For instance,
〈⊥,⊥,$,⊥,$,⊥,$,⊥〉

represents the decimal value 42. An agent returning a constant with this value is given by:

BYTE42
def= byte42 〈⊥,⊥,$,⊥,$,⊥,$,⊥〉.BYTE42 ,

and accordingly for for each i ∈ {0 . . . 255} in BYTEi . However, since a byte has only a fixed
capacity and basic functions like addition and comparison can only be implemented using rather
complex agents, they will not be discussed further. Instead, a representation of natural numbers
as a generalization of bytes will be discussed.
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!
In addition to the agent AND introduced earlier, the new variant is not blocking until the

response has been collected, since the modified AND is activated again using recursion placed
in parallel with the response sent via resp. A boolean disjunction is given by:

Definition 4.10 (Boolean Disjunction) The agent OR compares two names typed as booleans
for boolean disjunction:

OR def= cell(v).or(b1 , b2 , resp).b1 (x).b2 (y).([x = ⊥][y = ⊥]v〈⊥〉.OR1+
[x = $]v〈$〉.OR1 + [y = $]v〈$〉.OR1 )

OR1
def= (resp〈v〉.0 | OR) .

!
Finally, a boolean negation is given by the agent NEG :

Definition 4.11 (Boolean Negation) The agent NEG applies boolean negation to a name typed
as boolean.

NEG def= neg(b, resp).true(t).false(f).b(x).(
([b = t]resp〈false〉.0 + [b = f ]resp〈true〉.0) | NEG) .

!
The boolean negation incorporates the TRUE and FALSE agents to first fetch the actual

names for true and false and furthermore returns the result as a constant. Agents 4.9 (Boolean
Conjunction) and 4.10 (Boolean Disjunction) can be adapted to work the same way. We showed
both variants to provide a choice for the application. Usage of the fixed names $ and ⊥ provides
less overhead, whereas the agents TRUE and FALSE provide more flexibility regarding the
actual names for true and false, as well as providing constants for them. In the remainder, we
use the agents TRUE and FALSE as defined, e.g. providing the names $ for true and ⊥ for
false. Thus, a fetching of the actual values for true and false is omitted.

A second unit of data is a byte that is represented by a tuple of eight bits:

Definition 4.12 (Byte) A byte is given by a tuple of eight boolean values used as subjects of
input and outputs prefixes. The type of a byte is byte, e.g. byte42 : byte. !

For instance,
〈⊥,⊥,$,⊥,$,⊥,$,⊥〉

represents the decimal value 42. An agent returning a constant with this value is given by:

BYTE42
def= byte42 〈⊥,⊥,$,⊥,$,⊥,$,⊥〉.BYTE42 ,

and accordingly for for each i ∈ {0 . . . 255} in BYTEi . However, since a byte has only a fixed
capacity and basic functions like addition and comparison can only be implemented using rather
complex agents, they will not be discussed further. Instead, a representation of natural numbers
as a generalization of bytes will be discussed.
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!
In addition to the agent AND introduced earlier, the new variant is not blocking until the

response has been collected, since the modified AND is activated again using recursion placed
in parallel with the response sent via resp. A boolean disjunction is given by:

Definition 4.10 (Boolean Disjunction) The agent OR compares two names typed as booleans
for boolean disjunction:

OR def= cell(v).or(b1 , b2 , resp).b1 (x).b2 (y).([x = ⊥][y = ⊥]v〈⊥〉.OR1+
[x = $]v〈$〉.OR1 + [y = $]v〈$〉.OR1 )

OR1
def= (resp〈v〉.0 | OR) .

!
Finally, a boolean negation is given by the agent NEG :

Definition 4.11 (Boolean Negation) The agent NEG applies boolean negation to a name typed
as boolean.

NEG def= neg(b, resp).true(t).false(f).b(x).(
([b = t]resp〈false〉.0 + [b = f ]resp〈true〉.0) | NEG) .

!
The boolean negation incorporates the TRUE and FALSE agents to first fetch the actual

names for true and false and furthermore returns the result as a constant. Agents 4.9 (Boolean
Conjunction) and 4.10 (Boolean Disjunction) can be adapted to work the same way. We showed
both variants to provide a choice for the application. Usage of the fixed names $ and ⊥ provides
less overhead, whereas the agents TRUE and FALSE provide more flexibility regarding the
actual names for true and false, as well as providing constants for them. In the remainder, we
use the agents TRUE and FALSE as defined, e.g. providing the names $ for true and ⊥ for
false. Thus, a fetching of the actual values for true and false is omitted.

A second unit of data is a byte that is represented by a tuple of eight bits:

Definition 4.12 (Byte) A byte is given by a tuple of eight boolean values used as subjects of
input and outputs prefixes. The type of a byte is byte, e.g. byte42 : byte. !

For instance,
〈⊥,⊥,$,⊥,$,⊥,$,⊥〉

represents the decimal value 42. An agent returning a constant with this value is given by:

BYTE42
def= byte42 〈⊥,⊥,$,⊥,$,⊥,$,⊥〉.BYTE42 ,

and accordingly for for each i ∈ {0 . . . 255} in BYTEi . However, since a byte has only a fixed
capacity and basic functions like addition and comparison can only be implemented using rather
complex agents, they will not be discussed further. Instead, a representation of natural numbers
as a generalization of bytes will be discussed.
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!
In addition to the agent AND introduced earlier, the new variant is not blocking until the

response has been collected, since the modified AND is activated again using recursion placed
in parallel with the response sent via resp. A boolean disjunction is given by:

Definition 4.10 (Boolean Disjunction) The agent OR compares two names typed as booleans
for boolean disjunction:

OR def= cell(v).or(b1 , b2 , resp).b1 (x).b2 (y).([x = ⊥][y = ⊥]v〈⊥〉.OR1+
[x = $]v〈$〉.OR1 + [y = $]v〈$〉.OR1 )

OR1
def= (resp〈v〉.0 | OR) .

!
Finally, a boolean negation is given by the agent NEG :

Definition 4.11 (Boolean Negation) The agent NEG applies boolean negation to a name typed
as boolean.

NEG def= neg(b, resp).true(t).false(f).b(x).(
([b = t]resp〈false〉.0 + [b = f ]resp〈true〉.0) | NEG) .

!
The boolean negation incorporates the TRUE and FALSE agents to first fetch the actual

names for true and false and furthermore returns the result as a constant. Agents 4.9 (Boolean
Conjunction) and 4.10 (Boolean Disjunction) can be adapted to work the same way. We showed
both variants to provide a choice for the application. Usage of the fixed names $ and ⊥ provides
less overhead, whereas the agents TRUE and FALSE provide more flexibility regarding the
actual names for true and false, as well as providing constants for them. In the remainder, we
use the agents TRUE and FALSE as defined, e.g. providing the names $ for true and ⊥ for
false. Thus, a fetching of the actual values for true and false is omitted.

A second unit of data is a byte that is represented by a tuple of eight bits:

Definition 4.12 (Byte) A byte is given by a tuple of eight boolean values used as subjects of
input and outputs prefixes. The type of a byte is byte, e.g. byte42 : byte. !

For instance,
〈⊥,⊥,$,⊥,$,⊥,$,⊥〉

represents the decimal value 42. An agent returning a constant with this value is given by:

BYTE42
def= byte42 〈⊥,⊥,$,⊥,$,⊥,$,⊥〉.BYTE42 ,

and accordingly for for each i ∈ {0 . . . 255} in BYTEi . However, since a byte has only a fixed
capacity and basic functions like addition and comparison can only be implemented using rather
complex agents, they will not be discussed further. Instead, a representation of natural numbers
as a generalization of bytes will be discussed.
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• More structures are possible:

• Natural numbers based on extended 
queues

• Lists using natural numbers as indices 
(why?)

• Strings

• etc.



Workflow Data 
Patterns

54



CHAPTER 4. DATA 78
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Figure 4.2: Different data layers.

accessible only within the context of individual execution instances of that activity. (According
to [113, p.6])
Implementation: Each activity can use restricted names for internal calculations. These names
can either be directly created using the ν operator or by creating new data structures such as a
cell. For instance,

A
def= νx cell(c).τ.0 ,

represents an activity that (1) creates a restricted name x used for internal calculation, and (2)
acquires another restricted name c pointing to a cell. The scope of x is restricted to A, whereas
c is restricted between CELL and A.

Pattern 4.2 (Complex Activity Data) Description: Complex activities are able to define data
elements, which are accessible by each of their components. (According to [113, p.7])
Implementation: A complex activity is represented by an agent consisting of several com-
ponents, where each component represents an activity. Complex activity data is then created
according to pattern 4.1 (Activity Data), with the distinction that the names are scoped to all
components. For instance,

C
def= queue(q, e).(A | B) ,

represents a complex activity C with the activities A and B contained inside. C first creates a
new queue q, that can afterward be accessed by A and B.

Pattern 4.3 (Scope Data) Description: Data elements can be defined which are accessible by
a subset of the activities in a process instance. (According to [113, p.9])
Implementation: A process instance is given by an agent consisting of several components
which represent activities and complex activities. Simple subsets can be defined by restricting
the scope of a name to certain components. More complex scopes (i.e. overlapping ones) require
the use of data interaction patterns introduced later on. For instance,

I
def= (A | B | νz (C | D)) ,

restricts the scope of the name z between the components C and D.

Pattern 4.4 (Multiple Instance Data) Description: Activities which are able to execute mul-
tiple times within a single process instance can define data elements which are specific to an
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Figure 4.1: Flow graph of agents representing business process activities and data.

name y will not be extruded any further. The agent D consists of two components E and F and
thus describes a complex activity. If the scope of a name is extruded to D, it should also include
E and F . Finally, agent E uses data provided by the environment via the name r. Access to
the environment can occur by either restricted names scoped to certain activities; i.e. external
triggers, or by free names representing constants or functions. Examples for each of the different
types of data found in business processes are contained in the data visibility patterns subsection.

Furthermore, we do not make a sharp distinction between activities and activity instances
(accordingly for processes and process instances). An activity is given by an agent according to
its definition; whereas an activity instance is given by an agent that already evolved at least once
(see chapter 5.1.3 for details). To keep consistency with the terms introduced in chapter 3 (Busi-
ness Process Management), we adapt the pattern names given in the data pattern documentation
[113] to the introduced terminology. This regards tasks, that are denoted as activities, cases, that
are denoted as process instances, workflows that are denoted as processes, sub processes that
are denoted as complex activities, as well as workflow management systems that are denoted
as business process management systems. Since the data pattern descriptions are complex, and
only given in natural language, we focus on examples of the different implementation possibil-
ities. Hence, in a pattern like style, we show one adequate solution for each pattern without
assuming completeness.

4.3.1 Data Visibility Patterns

Data visibility patterns define different layers of accessibility for data elements. The layers are
depicted in figure 4.2. Inner layers have access to shared data of all outer layers, wheras the
converse does not hold. For instance, an activity can access shared data of a complex activity
it is part of, incorporate process instance data, and data provided for all instances by the BPMS
and the environment. A process, however, has no permission to access data that is restricted to a
certain activity. The different data visibility patterns are discussed in this subsection.

Pattern 4.1 (Activity Data) Description: Data elements can be defined by activities which are
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Figure 4.2: Different data layers.

accessible only within the context of individual execution instances of that activity. (According
to [113, p.6])
Implementation: Each activity can use restricted names for internal calculations. These names
can either be directly created using the ν operator or by creating new data structures such as a
cell. For instance,

A
def= νx cell(c).τ.0 ,

represents an activity that (1) creates a restricted name x used for internal calculation, and (2)
acquires another restricted name c pointing to a cell. The scope of x is restricted to A, whereas
c is restricted between CELL and A.

Pattern 4.2 (Complex Activity Data) Description: Complex activities are able to define data
elements, which are accessible by each of their components. (According to [113, p.7])
Implementation: A complex activity is represented by an agent consisting of several com-
ponents, where each component represents an activity. Complex activity data is then created
according to pattern 4.1 (Activity Data), with the distinction that the names are scoped to all
components. For instance,

C
def= queue(q, e).(A | B) ,

represents a complex activity C with the activities A and B contained inside. C first creates a
new queue q, that can afterward be accessed by A and B.

Pattern 4.3 (Scope Data) Description: Data elements can be defined which are accessible by
a subset of the activities in a process instance. (According to [113, p.9])
Implementation: A process instance is given by an agent consisting of several components
which represent activities and complex activities. Simple subsets can be defined by restricting
the scope of a name to certain components. More complex scopes (i.e. overlapping ones) require
the use of data interaction patterns introduced later on. For instance,

I
def= (A | B | νz (C | D)) ,

restricts the scope of the name z between the components C and D.

Pattern 4.4 (Multiple Instance Data) Description: Activities which are able to execute mul-
tiple times within a single process instance can define data elements which are specific to an
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accessible only within the context of individual execution instances of that activity. (According
to [113, p.6])
Implementation: Each activity can use restricted names for internal calculations. These names
can either be directly created using the ν operator or by creating new data structures such as a
cell. For instance,

A
def= νx cell(c).τ.0 ,

represents an activity that (1) creates a restricted name x used for internal calculation, and (2)
acquires another restricted name c pointing to a cell. The scope of x is restricted to A, whereas
c is restricted between CELL and A.

Pattern 4.2 (Complex Activity Data) Description: Complex activities are able to define data
elements, which are accessible by each of their components. (According to [113, p.7])
Implementation: A complex activity is represented by an agent consisting of several com-
ponents, where each component represents an activity. Complex activity data is then created
according to pattern 4.1 (Activity Data), with the distinction that the names are scoped to all
components. For instance,

C
def= queue(q, e).(A | B) ,

represents a complex activity C with the activities A and B contained inside. C first creates a
new queue q, that can afterward be accessed by A and B.

Pattern 4.3 (Scope Data) Description: Data elements can be defined which are accessible by
a subset of the activities in a process instance. (According to [113, p.9])
Implementation: A process instance is given by an agent consisting of several components
which represent activities and complex activities. Simple subsets can be defined by restricting
the scope of a name to certain components. More complex scopes (i.e. overlapping ones) require
the use of data interaction patterns introduced later on. For instance,

I
def= (A | B | νz (C | D)) ,

restricts the scope of the name z between the components C and D.

Pattern 4.4 (Multiple Instance Data) Description: Activities which are able to execute mul-
tiple times within a single process instance can define data elements which are specific to an
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accessible only within the context of individual execution instances of that activity. (According
to [113, p.6])
Implementation: Each activity can use restricted names for internal calculations. These names
can either be directly created using the ν operator or by creating new data structures such as a
cell. For instance,

A
def= νx cell(c).τ.0 ,

represents an activity that (1) creates a restricted name x used for internal calculation, and (2)
acquires another restricted name c pointing to a cell. The scope of x is restricted to A, whereas
c is restricted between CELL and A.

Pattern 4.2 (Complex Activity Data) Description: Complex activities are able to define data
elements, which are accessible by each of their components. (According to [113, p.7])
Implementation: A complex activity is represented by an agent consisting of several com-
ponents, where each component represents an activity. Complex activity data is then created
according to pattern 4.1 (Activity Data), with the distinction that the names are scoped to all
components. For instance,

C
def= queue(q, e).(A | B) ,

represents a complex activity C with the activities A and B contained inside. C first creates a
new queue q, that can afterward be accessed by A and B.

Pattern 4.3 (Scope Data) Description: Data elements can be defined which are accessible by
a subset of the activities in a process instance. (According to [113, p.9])
Implementation: A process instance is given by an agent consisting of several components
which represent activities and complex activities. Simple subsets can be defined by restricting
the scope of a name to certain components. More complex scopes (i.e. overlapping ones) require
the use of data interaction patterns introduced later on. For instance,

I
def= (A | B | νz (C | D)) ,

restricts the scope of the name z between the components C and D.

Pattern 4.4 (Multiple Instance Data) Description: Activities which are able to execute mul-
tiple times within a single process instance can define data elements which are specific to an
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individual execution instance. (According to [113, p.10])
Implementation: Pattern 4.1 (Activity Data) can be applied to provide each instance of an
activity with its own restricted names. For instance,

M
def= νx τ.M + τ.0 ,

provides multiple executions of the functional part τ , each with its own restricted name x repre-
senting a data element.

Pattern 4.5 (Process Instance Data) Description: Data elements are supported which are
specific to a process instance. They can be accessed by all components of the process during the
execution of the process instance. (According to [113, p.12])
Implementation: Since a complex activity represents a process (see definition 3.10), the solution
from pattern 4.2 (Complex Activity Data) is sufficient.

Pattern 4.6 (Business Process Management System Data) Description: Data elements are
supported which are accessible to all components in each and every process instance and are
within the control of the business process management system (BPMS). (According to [113,
p.13])
Implementation: This pattern requires the definition of a BPMS in π-calculus. Basically, a
BPMS is an agent consisting of a component representing a process that can be enacted several
times. Data available to all components has then to be defined inside the BPMS agent. For
instance,

BPMS def= stack(s, e).(Penact) and Penact
def= start .(P | Penact) ,

creates a new instance of a process represented by agent P each time the agent BPMS receives
the name start . Immediately, further instances can be created using recursion. All instances
have access to the stack created first in BPMS .

Pattern 4.7 (Environment Data) Description: Data elements, which exist in the external
operating environment, are able to be accessed by components of the process during execution.
(According to [113, p.14])
Implementation: This pattern requires the definition of an environment. Basically, an environ-
ment is represented by an agent E enacted concurrently with a BPMS agent. For instance,

SYS def= νsensor (BPMS | E) ,

defines a system consisting of a BPMS and environment. The environment agent E can interact
with the BPMS agent via sensor , that is available to all components inside SYS .

4.3.2 Data Interaction Patterns

Data interaction patterns describe how activities of a business process can exchange data. The
data interaction patterns are parted into internal and external ones. We only discuss internal data
interaction, since external data interaction is closely related to the service interaction patterns
that will be discussed in detail in chapter 6 (Interactions).
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Pattern 4.8 (Data Interaction—Activity to Activity) Description: The ability to communi-
cate data elements between one activity instance and another within the same process instance.
(According to [113, p.16])
Implementation: Two activities can exchange data by the use of restricted names. The restric-
tions should only cover the agents representing the activities involved under consideration of
SC-RES-COMP . For instance, in a process with two activities represented by the agent

P
def= νd (cell(a).τ.d〈a〉.0 | d(x).τ.0) ,

the left hand component (i.e. activity) passes the name a to the right hand component (i.e.
activity) using the restricted name d. Furthermore, activity to activity data interaction can take
place by adapting pattern 4.5 (Process Instance Data).

Pattern 4.9 (Data Interaction—Complex Activity Decomposition) Description: The ability
to pass data elements to a complex activity. (According to [113, p.18])
Implementation: A complex activity receives data from preceding activities or other com-
plex activities by receiving it via a restricted name according to pattern 4.8 (Data Interaction—
Activity to Activity). For instance, a complex activity receiving a name available to all of its
activities is given as

C
def= d(x).(A | B) .

Consequently, the name d has to be restricted between the agent representing the preceding
activity and C.

Pattern 4.10 (Data Interaction—Complex Activity Finalization) Description: The ability
to pass data elements from a complex activity. (According to [113, p.20])
Implementation: This pattern complements the preceding pattern. However, a substantial ex-
tension to complex activities is required, namely an explicit synchronization of the components.
This is again done using restricted names. For instance,

C
def= νc1 νc2 (cell(u).τ.c1 〈u〉.0 | νv τ.c2 〈v〉.0 | c1 (x).c2 (y).d〈x, y〉.0)

shows an agent with three components representing a complex activity. The left component (i.e.
activity) acquires a new cell u, whereas the middle component creates a restricted name v. Both
names, u and v, are sent as subject in the complex activity synchronization component, repre-
sented by the right hand term. The agents representing the activities contained in the complex
activity are synchronized via c1 and c2 . The data is transmitted to an agent representing the
subsequent activity via d.

Pattern 4.11 (Data Interaction—To Multiple Instance Activities) Description: The ability
to pass data elements from a preceding activity instance to a subsequent activity which is able
to support multiple instances. This may involve passing the data elements to all instances of the
multiple instances activity or distributing them on a selective basis. (According to [113, p.20])
Implementation: This pattern distinguishes two possibilities: Either all activity instances work
on the same, shared data or each instance receives a specific data element to work on. An
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Pattern 4.8 (Data Interaction—Activity to Activity) Description: The ability to communi-
cate data elements between one activity instance and another within the same process instance.
(According to [113, p.16])
Implementation: Two activities can exchange data by the use of restricted names. The restric-
tions should only cover the agents representing the activities involved under consideration of
SC-RES-COMP . For instance, in a process with two activities represented by the agent

P
def= νd (cell(a).τ.d〈a〉.0 | d(x).τ.0) ,

the left hand component (i.e. activity) passes the name a to the right hand component (i.e.
activity) using the restricted name d. Furthermore, activity to activity data interaction can take
place by adapting pattern 4.5 (Process Instance Data).

Pattern 4.9 (Data Interaction—Complex Activity Decomposition) Description: The ability
to pass data elements to a complex activity. (According to [113, p.18])
Implementation: A complex activity receives data from preceding activities or other com-
plex activities by receiving it via a restricted name according to pattern 4.8 (Data Interaction—
Activity to Activity). For instance, a complex activity receiving a name available to all of its
activities is given as

C
def= d(x).(A | B) .

Consequently, the name d has to be restricted between the agent representing the preceding
activity and C.

Pattern 4.10 (Data Interaction—Complex Activity Finalization) Description: The ability
to pass data elements from a complex activity. (According to [113, p.20])
Implementation: This pattern complements the preceding pattern. However, a substantial ex-
tension to complex activities is required, namely an explicit synchronization of the components.
This is again done using restricted names. For instance,

C
def= νc1 νc2 (cell(u).τ.c1 〈u〉.0 | νv τ.c2 〈v〉.0 | c1 (x).c2 (y).d〈x, y〉.0)

shows an agent with three components representing a complex activity. The left component (i.e.
activity) acquires a new cell u, whereas the middle component creates a restricted name v. Both
names, u and v, are sent as subject in the complex activity synchronization component, repre-
sented by the right hand term. The agents representing the activities contained in the complex
activity are synchronized via c1 and c2 . The data is transmitted to an agent representing the
subsequent activity via d.

Pattern 4.11 (Data Interaction—To Multiple Instance Activities) Description: The ability
to pass data elements from a preceding activity instance to a subsequent activity which is able
to support multiple instances. This may involve passing the data elements to all instances of the
multiple instances activity or distributing them on a selective basis. (According to [113, p.20])
Implementation: This pattern distinguishes two possibilities: Either all activity instances work
on the same, shared data or each instance receives a specific data element to work on. An
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Pattern 4.8 (Data Interaction—Activity to Activity) Description: The ability to communi-
cate data elements between one activity instance and another within the same process instance.
(According to [113, p.16])
Implementation: Two activities can exchange data by the use of restricted names. The restric-
tions should only cover the agents representing the activities involved under consideration of
SC-RES-COMP . For instance, in a process with two activities represented by the agent

P
def= νd (cell(a).τ.d〈a〉.0 | d(x).τ.0) ,

the left hand component (i.e. activity) passes the name a to the right hand component (i.e.
activity) using the restricted name d. Furthermore, activity to activity data interaction can take
place by adapting pattern 4.5 (Process Instance Data).

Pattern 4.9 (Data Interaction—Complex Activity Decomposition) Description: The ability
to pass data elements to a complex activity. (According to [113, p.18])
Implementation: A complex activity receives data from preceding activities or other com-
plex activities by receiving it via a restricted name according to pattern 4.8 (Data Interaction—
Activity to Activity). For instance, a complex activity receiving a name available to all of its
activities is given as

C
def= d(x).(A | B) .

Consequently, the name d has to be restricted between the agent representing the preceding
activity and C.

Pattern 4.10 (Data Interaction—Complex Activity Finalization) Description: The ability
to pass data elements from a complex activity. (According to [113, p.20])
Implementation: This pattern complements the preceding pattern. However, a substantial ex-
tension to complex activities is required, namely an explicit synchronization of the components.
This is again done using restricted names. For instance,

C
def= νc1 νc2 (cell(u).τ.c1 〈u〉.0 | νv τ.c2 〈v〉.0 | c1 (x).c2 (y).d〈x, y〉.0)

shows an agent with three components representing a complex activity. The left component (i.e.
activity) acquires a new cell u, whereas the middle component creates a restricted name v. Both
names, u and v, are sent as subject in the complex activity synchronization component, repre-
sented by the right hand term. The agents representing the activities contained in the complex
activity are synchronized via c1 and c2 . The data is transmitted to an agent representing the
subsequent activity via d.

Pattern 4.11 (Data Interaction—To Multiple Instance Activities) Description: The ability
to pass data elements from a preceding activity instance to a subsequent activity which is able
to support multiple instances. This may involve passing the data elements to all instances of the
multiple instances activity or distributing them on a selective basis. (According to [113, p.20])
Implementation: This pattern distinguishes two possibilities: Either all activity instances work
on the same, shared data or each instance receives a specific data element to work on. An


