
1

Business Process
Management

Theory: The Pi-Calculus

Frank Puhlmann
Business Process Technology Group

Hasso Plattner Institut
Potsdam, Germany

Lazy Soundness
A Prototypical Tool-Chain

Lazy Soundness is a new kind of soundness dealing with so called
left-behind or lazy activities. Since these activities can be active while
the final activity of the business process has already been reached,
processes containing these activities can never be sound. Lazy
soundness provides a criterion to prove business processes containing
these activities to be free of deadlocks and livelocks.

Prof. Dr. Mathias Weske
Frank Puhlmann
Business Process Technology Group
Hasso Plattner Institute
Campus Griebnitzsee
14482 Potsdam, Germany

http://bpt.hpi.uni-potsdam.de

A business process containing Discriminator, N-out-of-M, or Multiple
Instances without Synchronization patterns (called the critical patterns),
such as

A

B

C

2 D

Problem

Solution

Structural

Sound Process

Initial

Node

Final

Node

A, B, and C represent three web service
interactions.

After two of them have completed, D is
executed and thereafter the process is
finished.

However, one of the activities is still active, and clean-up
work like payment and documentation has to be done.

As the remaining activity contradicts the soundness definition, we can
not use existing tools to verify the sample business process. Still,
automated verification regarding deadlocks and livelocks is quite
important even if you employ one of the critical patterns in your
business process.

Lazy Soundness proves business processes
containing the critical patterns (and all others) to
be free of deadlocks and livelocks. Technically, it
abstracts from all internals of the process and
just considers the initial and final node. The
abstracted process is verified using bisimulation
techniques.

Demo Presentation:

Thursday, Sep 7 10:30am, Room EI10

Lazy soundness has been implemented in a prototypical tool chain at
our research group. We provide a graphical editing of business
processes using BPMN, automatically formalize BPM diagrams into pi-
calculus expressions, and use existing tools to decide lazy soundness
for a given business process.

The theoretical background of Lazy Soundness will be presented on
Tuesday, September 5 16:30am, Room EI9.

(C) 2007 Frank Puhlmann

What happens here?

• We discuss the application of a general
theory for the description of mobile
systems into the area of BPM and its wider
parts

2

(C) 2007 Frank Puhlmann

What are mobile
systems?

• Mobile systems are made of entities that
move in a certain space

• Different kinds of mobility:

1. Links that move in an abstract space of
linked processes

2. Processes that move in an abstract space
of linked processes

3

(C) 2007 Frank Puhlmann

Dynamic Topologies
• Mobile systems describe behavior with

dynamic topologies, i.e. changing structures

• This is contrary to static structures for the
description of behavior, i.e. Petri nets:

4

(C) 2007 Frank Puhlmann

Link Passing Mobility
5

C S

S

S

S

S

S

B

(C) 2007 Frank Puhlmann

Outline Pi-Calculus Part

• Motivation

• The Theory of the Pi-Calculus

• Workflow and Data Patterns

• Application of the Pi-Calculus to BPM

• Verification

6

Motivation
The Shifting Focus

7

(C) 2007 Frank Puhlmann

A Shift in Theoretical
Foundations

• From: Sequential systems

• Lambda-Calculus (Church, Kleene, ≈1930)

• Over: Parallel systems

• Petri nets (Petri, ≈1960)

• To: Mobile systems

• Pi-Calculus (Milner, Parrow, Walker ≈1990)

8

(C) 2007 Frank Puhlmann

The Lambda-Calculus

• Defined to investigate the definition of
functions which are used for sequential
computing

• Precise definition of a computable function

• Recursion

• Algebra: Compositional Structure

• Smallest universal programming language

9

Start Task Decision Stop

(C) 2007 Frank Puhlmann

Sequential System
10

(C) 2007 Frank Puhlmann

Petri nets

• Business processes require parallelism

• Split, Joins

• Dependencies

• Petri nets build a foundation for BPM

• Explicit states and structure

• Strong visualization

11

(C) 2007 Frank Puhlmann

Parallel System
12

(C) 2007 Frank Puhlmann

Petri net drawbacks

• Good and Bad: Static structure

• No advanced composition

• Regarding behavioral workflow patterns:

• Excellent support for basic tasks

• Poor support for advanced tasks

13

(C) 2007 Frank Puhlmann

The Pi-Calculus

• Describes mobile systems

• Agents (processes) interacting by

• Names with agile scopes

• Is an algebra

14

(C) 2007 Frank Puhlmann

Mobile System

P2

P3

P5

P4

P1

P2

P3

P5

P4

P1

Evolution

15

(C) 2007 Frank Puhlmann

The Pi-Calculus
Advantage

• Overcomes the limitations of static
structures

• Has the pros and cons of an algebra

• Supports all behavioral workflow patterns

16

(C) 2007 Frank Puhlmann

Why mobile systems?

• What’s wrong with BPM and Petri nets?

• Why do we need mobile instead of parallel
systems?

• Strong discussion between academics and
practitioners

17

(C) 2007 Frank Puhlmann

Why mobile systems?

• We argue: Three major shifts in BPM will
lead to mobile systems as a theoretical
foundation

18

(C) 2007 Frank Puhlmann

BPM Shift 1:
From Static to Dynamic Systems

• Traditional: Static, state-based systems

• e.g. Workflow nets, Activity Diagrams,
BPMN (Token-Place concept)

• Today: Inter-organizational business
processes

• “Hard to change”

19

(C) 2007 Frank Puhlmann

Send

Request

Receive and

Process Answer

Timeout

Start Finish

Sample Process
20

Receive

Request
Send

Response

(C) 2007 Frank Puhlmann

Corresponding Process
21

Send

Request

Receive and

Process Answer

Timeout

Start Finish

Receive

Request

Send

Response

Requests Responses

System

Border

(C) 2007 Frank Puhlmann

Static Interaction
22

(C) 2007 Frank Puhlmann

• No explicit state description

• Each task is mapped to a service:

• Each task has pre- and postconditions
(i.e. in- and outgoing messages)

• All tasks are “swimming” inside a service-
oriented environment

Dynamic Systems

23

(C) 2007 Frank Puhlmann

Service-oriented Architecture
24

Service
Repository

Service
Requester

Service
Provider

Bind

PublishFind

(C) 2007 Frank Puhlmann

Reason 1:

• Mobile systems are based on the idea of
interaction by messages/events instead of
state transitions

• Support for dynamic binding

25

(C) 2007 Frank Puhlmann

BPM Shift II: From Central
Engines to Distributed Services

• Follows direct from the last shift:

• No more centralized engine as for intra-
organizational “workflow”

• Instead distributed services of different
granularity

26

(C) 2007 Frank Puhlmann

Distributed Services

P1

Send

Request
P3

Timeout

P2

Receive and

Process Answer
S1

Receive

Request

S2

Send

Response

Other space

Our space

27

(C) 2007 Frank Puhlmann

Reason II:

• Mobile systems support advanced
composition and visibility of their parts

• Support distribution and the service-
oriented idea for BPM

28

(C) 2007 Frank Puhlmann

BPM Shift III: From Closed
to Open Environments

• The environment where processes are executed
is shifting strongly from closed to open, which
means:

• Less accessibility

• More uncertainty

• Constant change regardless of us

• Number of possible interaction partners rises
fast

29

(C) 2007 Frank Puhlmann

Issues regarding Open
Environments

• Constant change requires dynamic adaption

• Flexible discovery and integration

• More agile interaction

30

(C) 2007 Frank Puhlmann

Reasons III:

• Mobile systems describe dynamic process
structures

• Based on a prototypical viewpoint

• Support “flexibility” regarding discovery
and interaction for BPM

31

(C) 2007 Frank Puhlmann

Motivation in a Nutshell

• Mobile systems support advanced key
concepts of BPM:

• Dynamic Binding

• Composition and Visibility

• Change

• The Pi-Calculus is a process algebra for
mobile systems

32

The Theory of the Pi-
Calculus
Syntax & Semantics

33

(C) 2007 Frank Puhlmann

Informal Introduction

• The Pi-Calculus is based on few concepts:

• Agents (Processes)

• Names

• Synchronized Interactions

34

talk

TIM TOM

(C) 2007 Frank Puhlmann

Basic Interaction
35

TOM
def
= talk(message).τTOM .0

TIM
def
= talk〈message〉.0

SYSTEM
def
= TIM | TOM

(C) 2007 Frank Puhlmann

Advanced Interaction

talk

TIM TOM

PRINTER

print
Evolution

talk

TIM TOM

PRINTER

print

36

TIM
def
= talk〈print〉.0

TOM
def
= talk(print).print〈file〉.0

PRINTER
def
= !print(file).τPRINT .0

SYSTEM
def
= TIM | TOM | PRINTER

TIM

TOM TIL

talk
TILTOM

talk

(C) 2007 Frank Puhlmann

Choice
37

TIM
def
= talkTOM 〈message〉.0 + talkTIL〈message〉.0

TIM
def
= [x = !]talkTOM 〈message〉.0+

[x = ⊥]talkTIL〈message〉.0

(C) 2007 Frank Puhlmann

Concurrency

TIM

TOM TIL

talk
TILTOM

talk

38

TIM
def
= talkTOM 〈message〉.0 | talkTIL〈message〉.0

(C) 2007 Frank Puhlmann

Name Creation

GENERATOR

39

GENERATOR
def
= (νx)get〈x〉.0

(C) 2007 Frank Puhlmann

The Pi-Calculus BNF

40

π ::= x〈y〉 | x(z) | τ | [x = y]π

P ::= M | P |P | νz P | !P

M ::= 0 | π.P | M + M

(C) 2007 Frank Puhlmann

Abbreviations

Composition:
3∏

1

(P) = P |P |P

Summation:
3∑

1

(P) = P + P + P

Sequence:{π}3

1 = π.π.π

with index:
3∑

i=1

(di.0) = d1.0 + d2.0 + d30

41

(C) 2007 Frank Puhlmann

Bound and free names

• In each of

the displayed occurrence of z is binding with scope
P

• An occurrence of a name in an agent is bound if it
is, or it lies within the scope of, a binding
occurrence of the name

• An occurrence of a name in an agent is free if it is
not bound

42

x(z).P and νz P

(C) 2007 Frank Puhlmann

Substitution

• We write

• for the simultaneous substitution of yi for
all free occurrences of xi in P, with the
change of bound names if necessary to
prevent any of the new names yi from
becoming bound in P

43

P{y1/x1
, · · · ,yn /xn

}

(C) 2007 Frank Puhlmann

Defined Agent
Identifiers

44

• A defined agent identifier is given by:

• Then

• if xi are free names in P

• the definition can be thought of as an agent
declaration with x1, ..., xn as formal parameters, and
the identifier A(y1, ..., yn) as an invocation with
actual parameters y1,..., yn

A(x1, · · · , xn)
def
= P

A(y1, · · · , yn) behaves as P{y1/x1
, · · · ,yn /xn

}

(C) 2007 Frank Puhlmann

Example: Communication

A B

C

A' B'

C

Evolution

b

x

b

x

45

A | B ≡ b〈x〉.A′ | b(y).B′

b〈x〉.A′ | b(y).B′ | C −→ A′ | B′{x/y} | C

(C) 2007 Frank Puhlmann

Example: Scope Intrusion

A B

C

b

x

D

x

scope of x

Evolution

A' B'

C

b

x

D

x'

scope of x

46

b〈x〉.A′ | C | (νx)(b(z).B′ | D)
−→

A′ | C | (νx′)(B′{x
′

/x}{
x/z} | D{x

′

/x})

(C) 2007 Frank Puhlmann

Example: Scope Extrusion

A B

C

b

x

scope of x

Evolution

A' B'

C

b

x

scope of x

47

(νx)(b〈x〉.A′ | C) | b(z).B′

−→

(νx)(A′ | C | B′{x/z})

(C) 2007 Frank Puhlmann

Example: Recursion
48

A
def
= b〈x〉.A + A

′

M(x)
def
= write(x).M(x) + read〈x〉.M(x)

(νwrite, read)(M(z) | A)

(C) 2007 Frank Puhlmann

The Polyadic Pi-
Calculus

• How can we send messages consisting of
multiple names?

49

(C) 2007 Frank Puhlmann

The Polyadic
Pi-Calculus

• Syntactical enhancement:

•

•

• Sequences:

•

• Empty messages:

• x〈ỹ〉 #−→ x iff ỹ = ∅, x(z̃) #−→ x iff z̃ = ∅

50

x〈y1, . . . , yn〉.P #−→ (νw)(x〈w〉.w〈y1〉.w〈yn〉.P)

x(z1, . . . , zn).P !−→ x(w).w(z1).w(zn).P

x1, . . . , xn !−→ x̃

(C) 2007 Frank Puhlmann

Reduction
• Evolution is formally defined as reduction

• The essence of reduction is captured in two axioms:

•

•

• and three rules:

•

•

•

τ.P + M −→ P

51

(x〈y〉.P1 + M1) | (x(z).P2 + M2) −→ P1 | P2{
y/z}

from P1 −→ P
′

1 infer P1|P2 −→ P
′

1|P2

from P −→ P
′
infer νz P −→ νz P

′

from P −→ P ′
and P ≡ Q and P ′

≡ Q′
infer Q −→ Q′

(C) 2007 Frank Puhlmann

Structural Congruence
• The axioms of structural congruence (Part 1):

• SC-MAT:

• SC-SUM-ASSOC:

• SC-SUM-COMM:

• SC-SUM-INACT:

• SC-COMP-ASSOC:

• SC-COMP-COMM:

• SC-COMP-INACT:

[x = x]π.P ≡ π.P

M1 + (M2 + M3) ≡ (M1 + M2) + M3

M1 + M2 ≡ M2 + M1

M + 0 ≡ M

P1|(P2|P3) ≡ (P1|P2)|P3

P1|P2 ≡ P2|P1

P |0 ≡ P

52

(C) 2007 Frank Puhlmann

Structural Congruence

• The axioms of structural congruence (Part 2):

• SC-RES:

• SC-RES-INACT:

• SC-RES-COMP:

• SC-REP

• UNFOLDING:

!P ≡ P |!P

53

A(ỹ) ≡ P{ỹ/x̃} if A(x̃)
def
= P

νz 0 ≡ 0

νzνw P ≡ νwνz P

νz (P1|P2) ≡ P1|νz P2, if z "∈ fn(P1)

(C) 2007 Frank Puhlmann

Example: Reduction
54

A
def
= (νz)a(x, y).x〈z〉.y.0

B
def
= a〈c, b〉.b.0

C
def
= c(m).0

P
def
= A | B | C

