Business Process Management

Theory: The Pi-Calculus

Frank Puhlmann Business Process Technology Group Hasso Plattner Institut Potsdam, Germany

IT Systems Engineering | Universität Potsdam

What happens here?

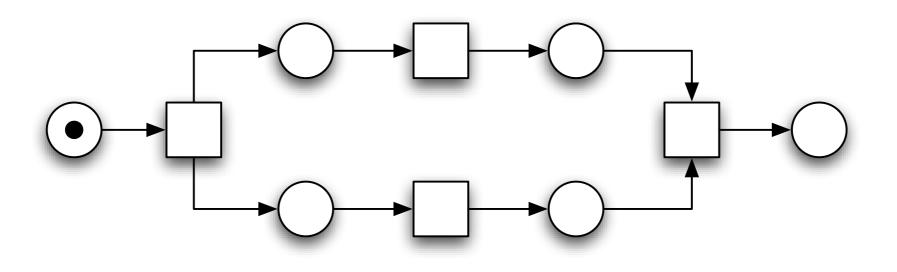
 We discuss the application of a general theory for the description of mobile systems into the area of BPM and its wider parts

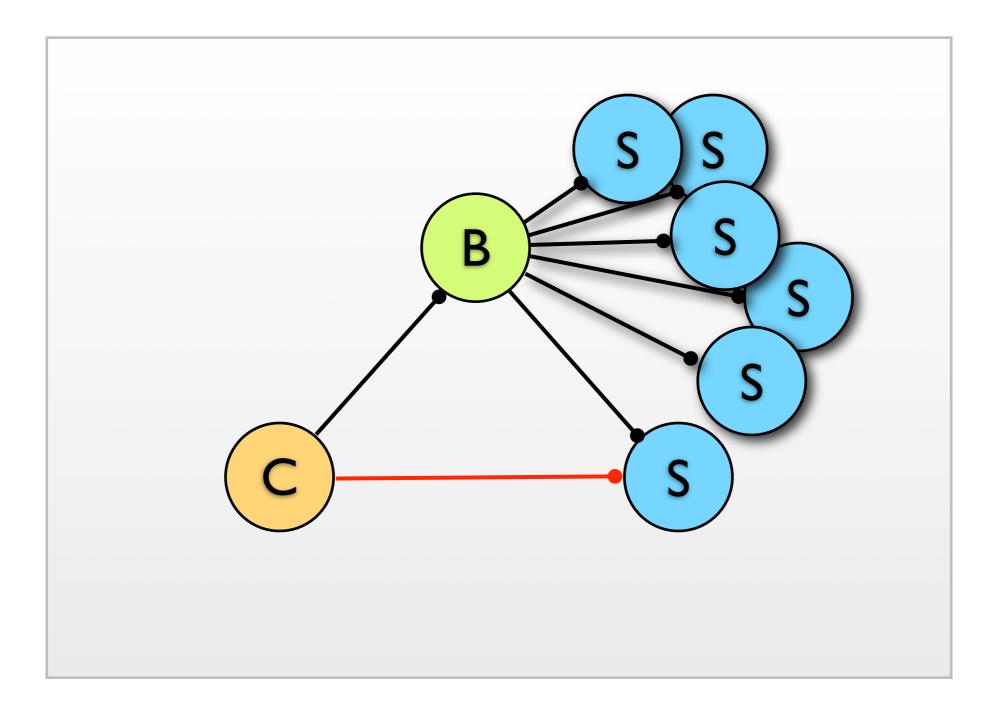
What are mobile systems?

- Mobile systems are made of entities that move in a certain space
- Different kinds of mobility:
 - I. Links that move in an abstract space of linked processes
 - 2. Processes that move in an abstract space of linked processes

Dynamic Topologies

- Mobile systems describe behavior with dynamic topologies, i.e. changing structures
- This is contrary to static structures for the description of behavior, i.e. Petri nets:





Link Passing Mobility

Outline Pi-Calculus Part

- Motivation
- The Theory of the Pi-Calculus
- Workflow and Data Patterns
- Application of the Pi-Calculus to BPM
- Verification

Motivation

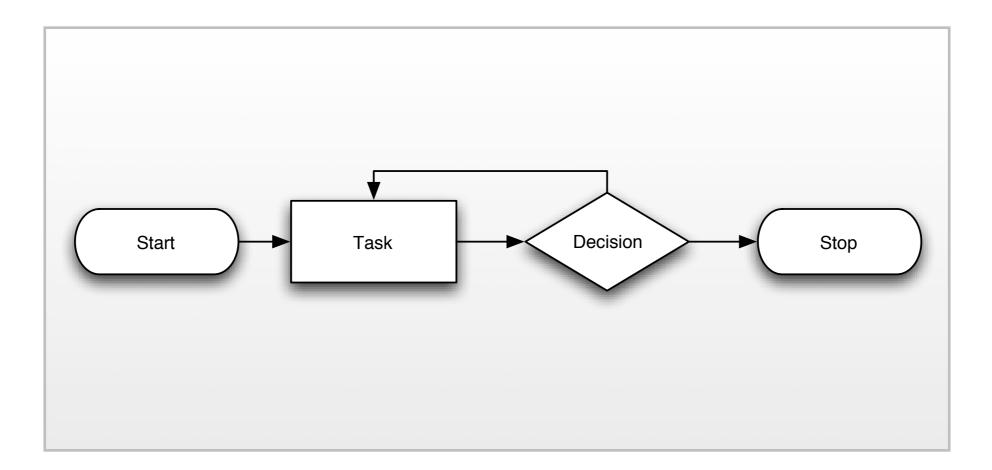
The Shifting Focus

A Shift in Theoretical Foundations

- From: Sequential systems
 - Lambda-Calculus (Church, Kleene, ≈1930)
- Over: Parallel systems
 - Petri nets (Petri, ≈1960)
- To: Mobile systems
 - Pi-Calculus (Milner, Parrow, Walker ≈1990)

The Lambda-Calculus

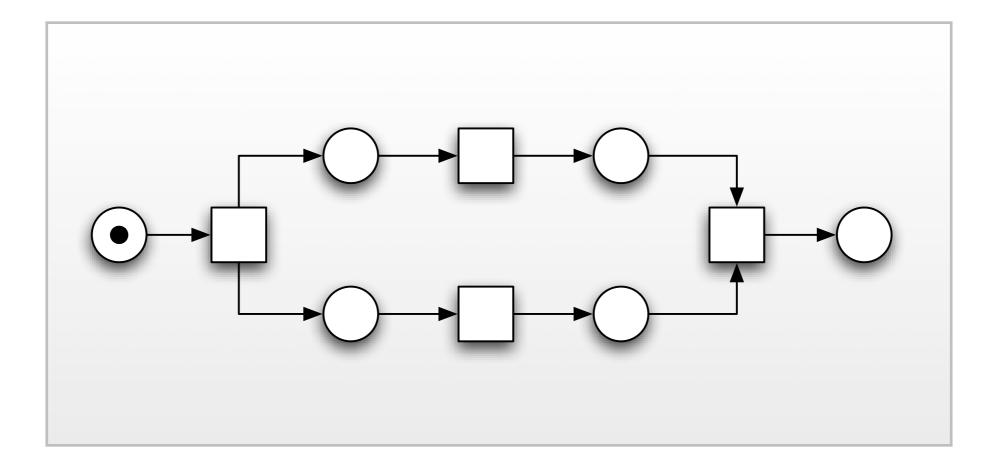
- Defined to investigate the definition of functions which are used for sequential computing
 - Precise definition of a computable function
 - Recursion
- Algebra: Compositional Structure
- Smallest universal programming language



Sequential System

Petri nets

- Business processes require parallelism
 - Split, Joins
 - Dependencies
- Petri nets build a foundation for BPM
 - Explicit states and structure
 - Strong visualization



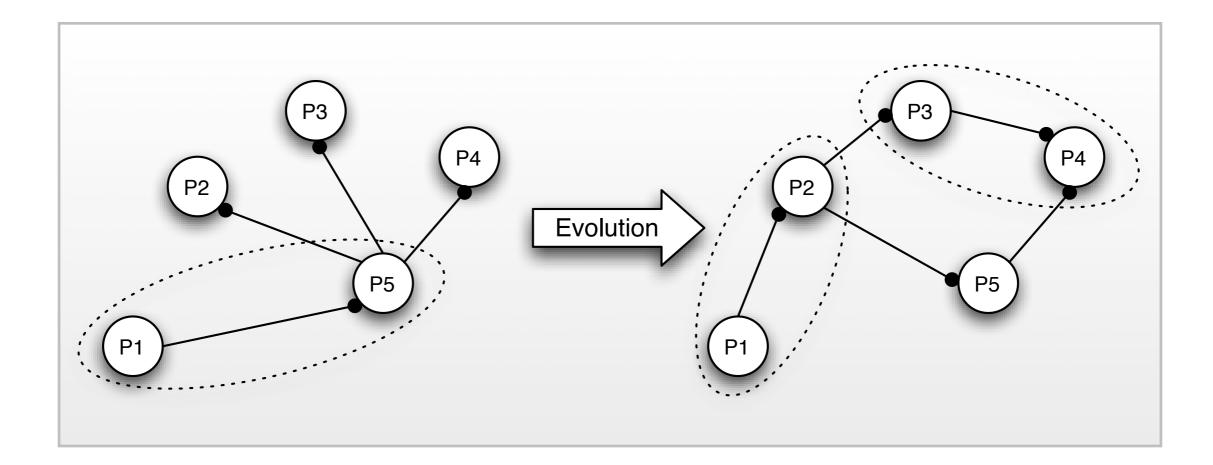
Parallel System

Petri net drawbacks

- Good and Bad: Static structure
- No advanced composition
- Regarding behavioral workflow patterns:
 - Excellent support for basic tasks
 - Poor support for advanced tasks

The Pi-Calculus

- Describes mobile systems
 - Agents (processes) interacting by
 - Names with agile scopes
- Is an algebra



Mobile System

The Pi-Calculus Advantage

- Overcomes the limitations of static structures
- Has the pros and cons of an algebra
- Supports all behavioral workflow patterns

Why mobile systems?

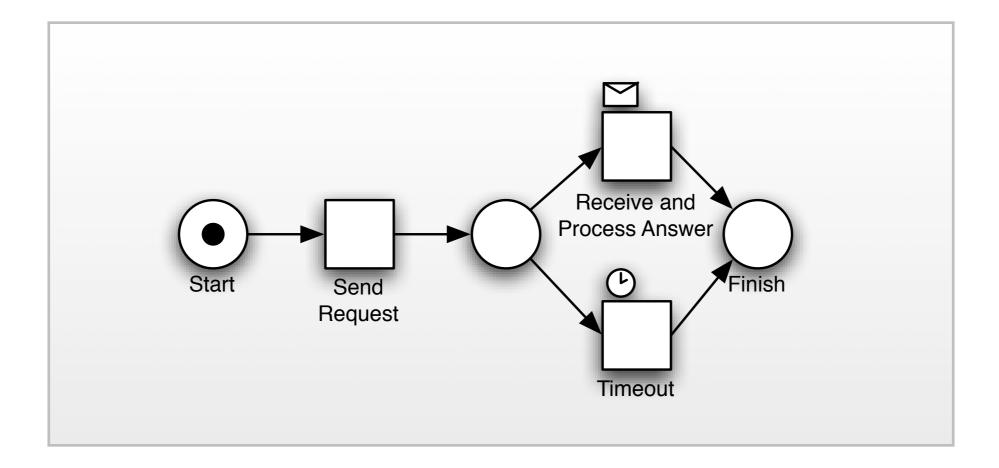
- What's wrong with BPM and Petri nets?
- Why do we need mobile instead of parallel systems?
 - Strong discussion between academics and practitioners

Why mobile systems?

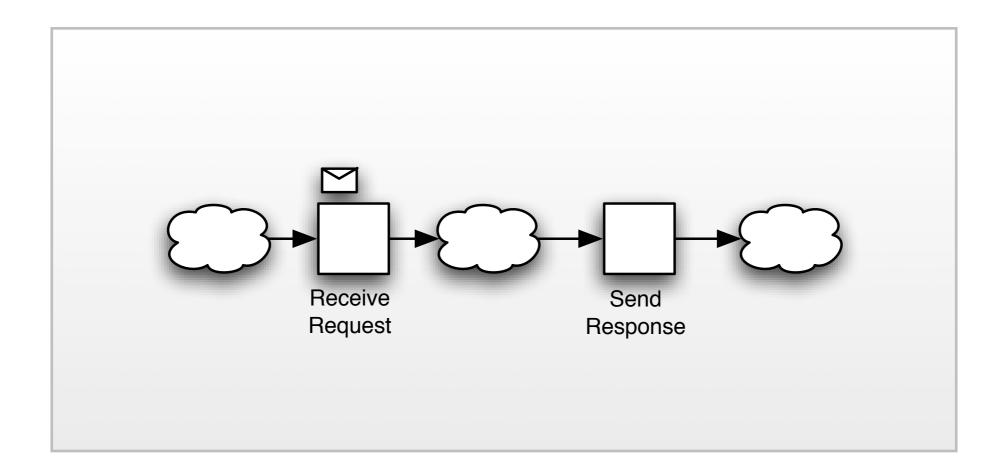
 We argue: Three major shifts in BPM will lead to mobile systems as a theoretical foundation

BPM Shift I: From Static to Dynamic Systems

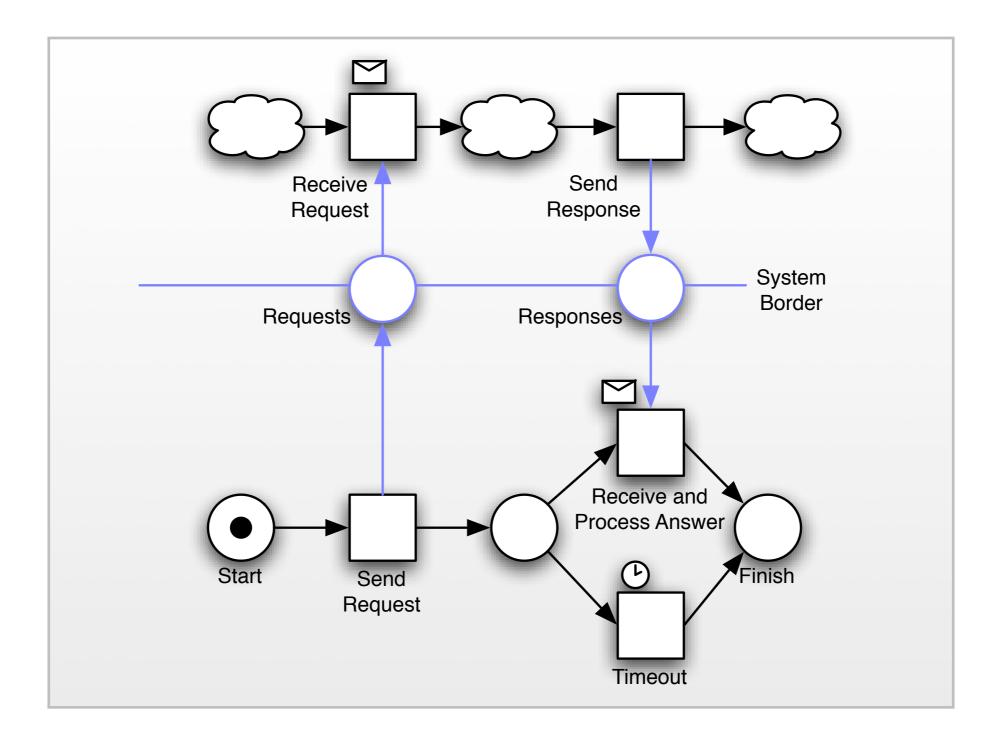
- Traditional: Static, state-based systems
 - e.g. Workflow nets, Activity Diagrams, BPMN (Token-Place concept)
- Today: Inter-organizational business processes
- "Hard to change"



Sample Process



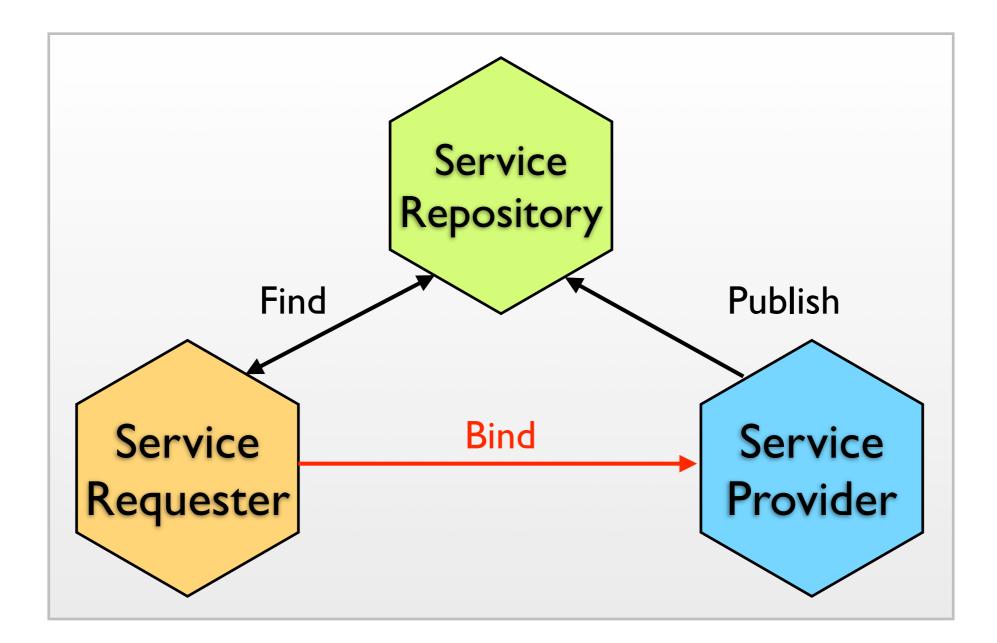
Corresponding Process



Static Interaction

Dynamic Systems

- No explicit state description
- Each task is mapped to a service:
 - Each task has pre- and postconditions (i.e. in- and outgoing messages)
 - All tasks are "swimming" inside a serviceoriented environment



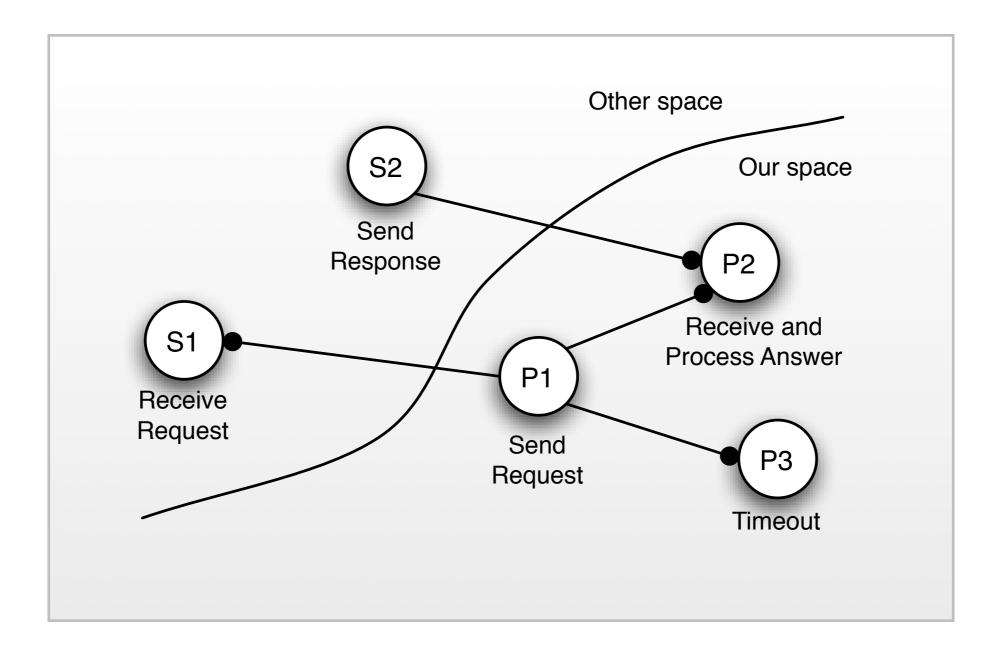
Service-oriented Architecture

Reason I:

- Mobile systems are based on the idea of interaction by messages/events instead of state transitions
- Support for dynamic binding

BPM Shift II: From Central Engines to Distributed Services

- Follows direct from the last shift:
 - No more centralized engine as for intraorganizational "workflow"
 - Instead distributed services of different granularity



Distributed Services

Reason II:

- Mobile systems support advanced composition and visibility of their parts
- Support distribution and the serviceoriented idea for BPM

BPM Shift III: From Closed to Open Environments

- The environment where processes are executed is shifting strongly from closed to open, which means:
 - Less accessibility
 - More uncertainty
 - Constant change regardless of us
 - Number of possible interaction partners rises fast

Issues regarding Open Environments

- Constant change requires dynamic adaption
- Flexible discovery and integration
- More agile interaction

Reasons III:

- Mobile systems describe dynamic process structures
- Based on a prototypical viewpoint
- Support "flexibility" regarding discovery and interaction for BPM

Motivation in a Nutshell

- Mobile systems support advanced key concepts of BPM:
 - Dynamic Binding
 - Composition and Visibility
 - Change
- The Pi-Calculus is a process algebra for mobile systems

The Theory of the Pi-Calculus

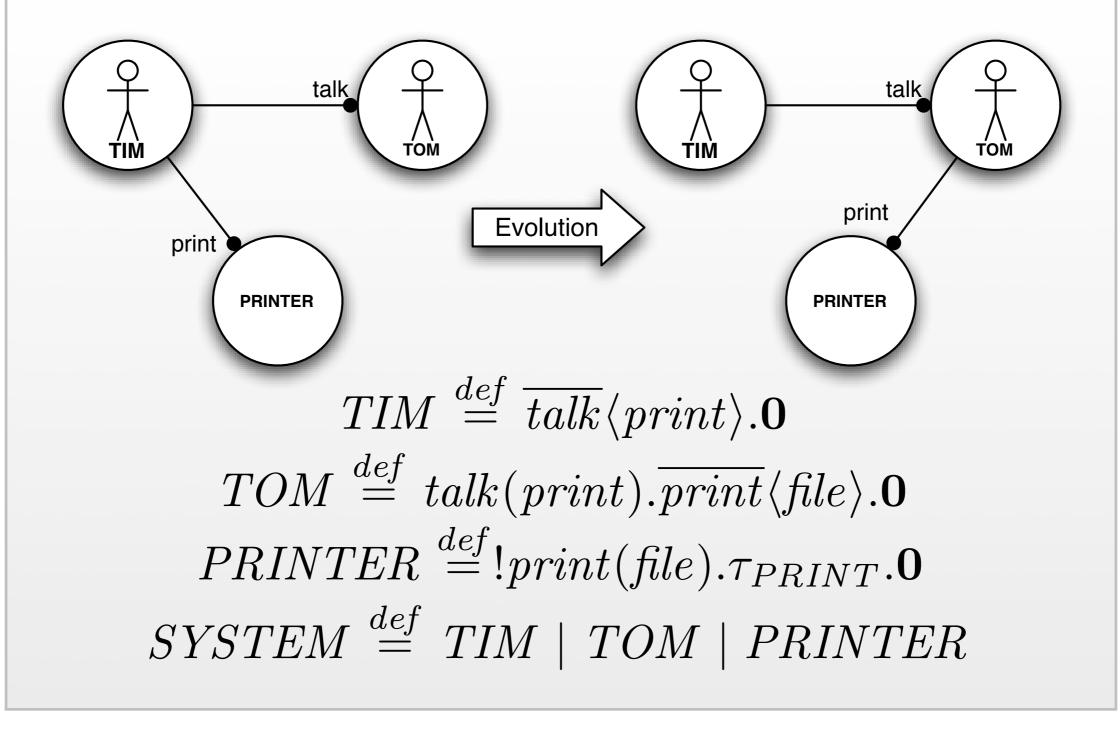
Syntax & Semantics

Informal Introduction

- The Pi-Calculus is based on few concepts:
 - Agents (Processes)
 - Names
 - Synchronized Interactions



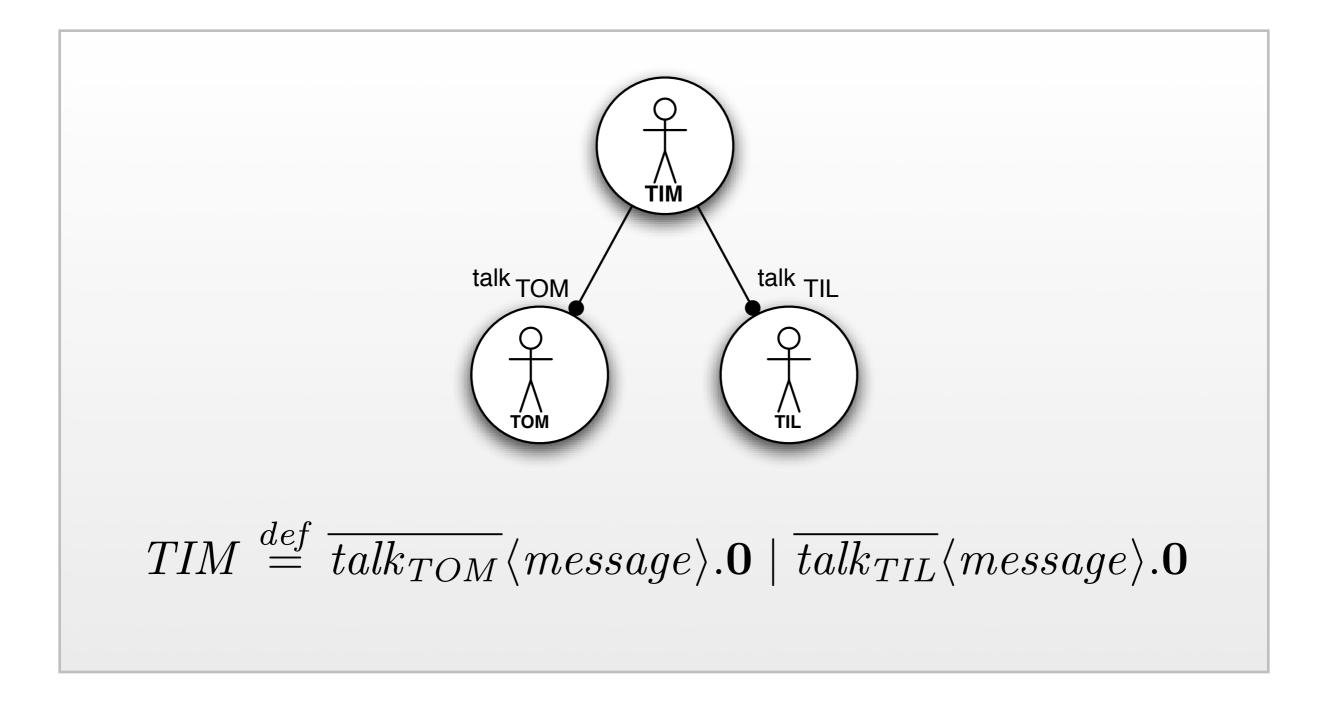
Basic Interaction



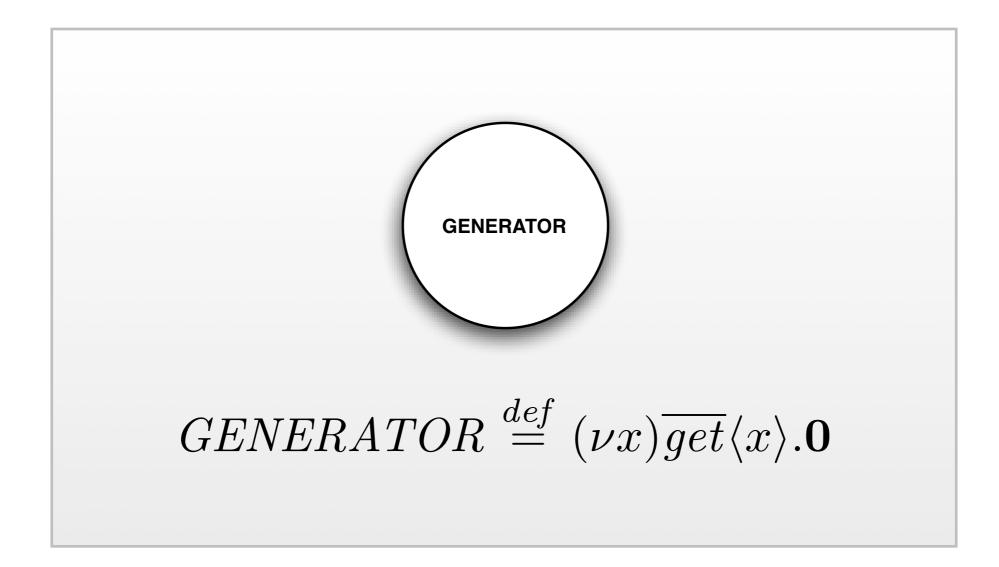
Advanced Interaction

$$TIM \stackrel{def}{=} \overline{talk_{TOM}} \langle message \rangle .\mathbf{0} + \overline{talk_{TIL}} \langle message \rangle .\mathbf{0} + TIM \stackrel{def}{=} [x = \top] \overline{talk_{TOM}} \langle message \rangle .\mathbf{0} + [x = \bot] \overline{talk_{TIL}} \langle message \rangle .\mathbf{0} + [x = \bot] \overline{talk_{TIL}} \langle message \rangle .\mathbf{0} + [x = \bot] \overline{talk_{TIL}} \langle message \rangle .\mathbf{0} + [x = \bot] \overline{talk_{TIL}} \langle message \rangle .\mathbf{0} + [x = \bot] \overline{talk_{TIL}} \langle message \rangle .\mathbf{0} + [x = \bot] \overline{talk_{TIL}} \langle message \rangle .\mathbf{0} + [x = \bot] \overline{talk_{TIL}} \langle message \rangle .\mathbf{0} + \overline{talk_{TIL}}$$

Choice



Concurrency



Name Creation

The Pi-Calculus BNF

 $P ::= M | P|P | \nu z P | !P$ $M ::= \mathbf{0} | \pi . P | M + M$ $\pi ::= \overline{x} \langle y \rangle | x(z) | \tau | [x = y]\pi$

Abbreviations

Composition:
$$\prod_{1}^{3} (P) = P|P|P$$

Summation:
$$\sum_{1}^{3} (P) = P + P + P$$

with index:
$$\sum_{i=1}^{3} (d_i \cdot \mathbf{0}) = d_1 \cdot \mathbf{0} + d_2 \cdot \mathbf{0} + d_3 \mathbf{0}$$

Sequence: $\{\pi\}_{1}^{3} = \pi.\pi.\pi$

Bound and free names

• In each of ()

x(z). *P* and $\nu z P$ the displayed occurrence of *z* is binding with scope *P*

- An occurrence of a name in an agent is *bound* if it is, or it lies within the scope of, a binding occurrence of the name
- An occurrence of a name in an agent is *free* if it is not bound

Substitution

• We write

$P\{{}^{y_1}/{}_{x_1},\cdots,{}^{y_n}/{}_{x_n}\}$

 for the simultaneous substitution of y_i for all free occurrences of x_i in P, with the change of bound names if necessary to prevent any of the new names y_i from becoming bound in P

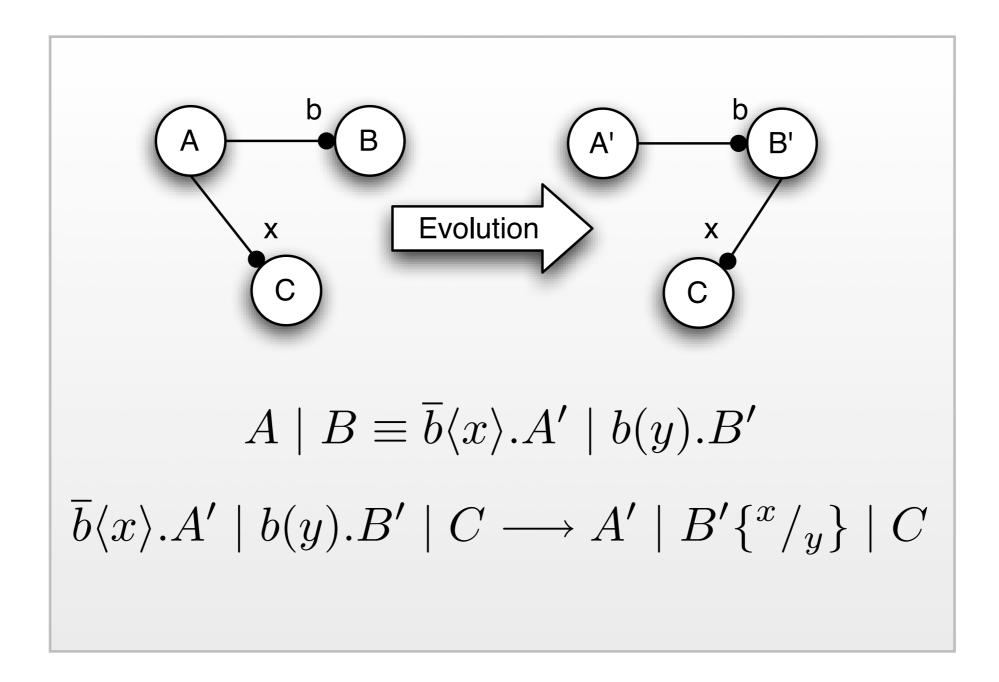
Defined Agent Identifiers

• A defined agent identifier is given by: $A(x_1, \cdots, x_n) \stackrel{def}{=} P$

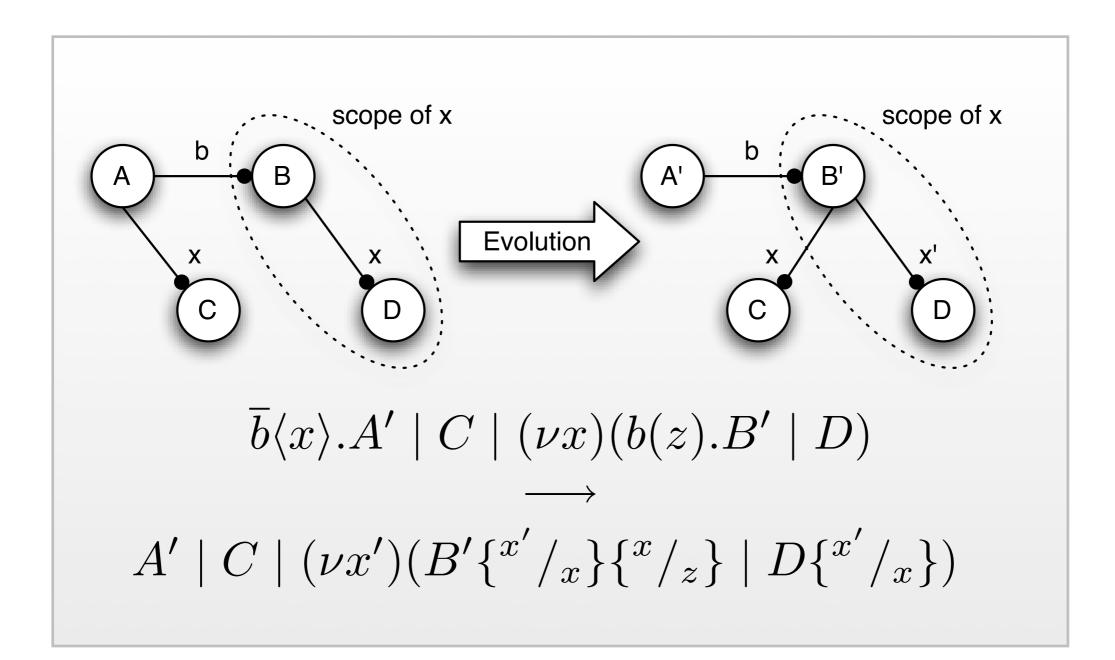
• Then

 $A(y_1, \dots, y_n)$ behaves as $P\{{}^{y_1}/{}_{x_1}, \dots, {}^{y_n}/{}_{x_n}\}$

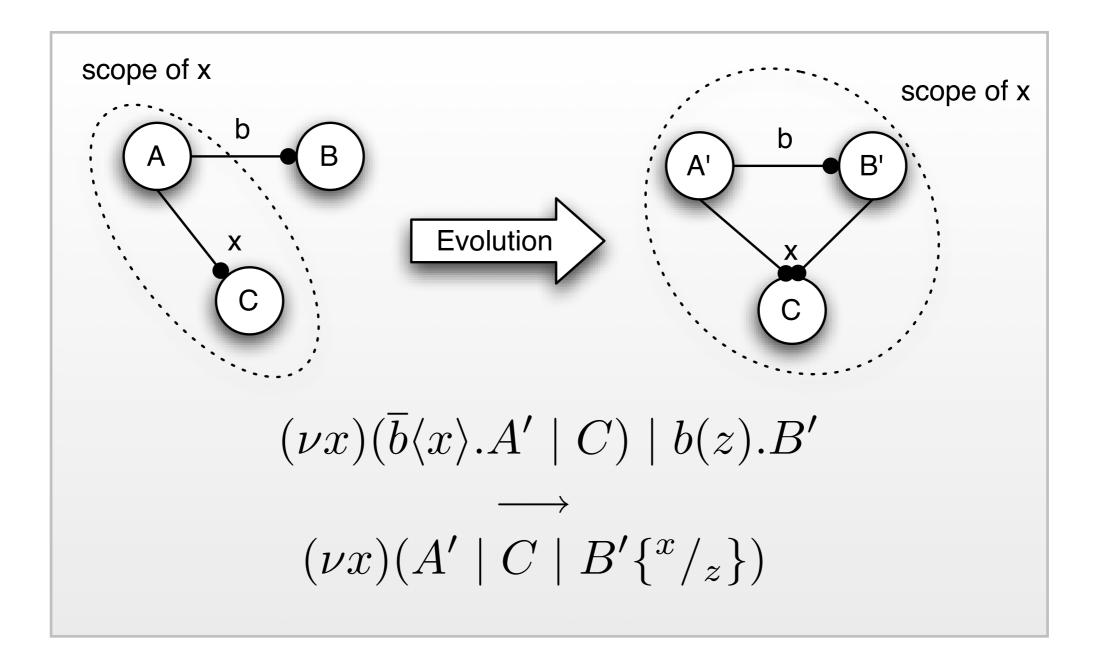
- if x_i are free names in P
- the definition can be thought of as an agent declaration with x₁, ..., x_n as formal parameters, and the identifier A(y₁, ..., y_n) as an invocation with actual parameters y₁,..., y_n



Example: Communication



Example: Scope Intrusion



Example: Scope Extrusion

$$A \stackrel{def}{=} \overline{b}\langle x \rangle.A + A'$$
$$M(x) \stackrel{def}{=} write(x).M(x) + \overline{read}\langle x \rangle.M(x)$$
$$(\nu write, read)(M(z) \mid A)$$

Example: Recursion

The Polyadic Pi-Calculus

How can we send messages consisting of multiple names?

The Polyadic Pi-Calculus

• Syntactical enhancement:

•
$$\overline{x}\langle y_1, \ldots, y_n \rangle . P \longmapsto (\nu w)(\overline{x}\langle w \rangle . \overline{w}\langle y_1 \rangle \ldots . \overline{w}\langle y_n \rangle . P)$$

•
$$x(z_1,\ldots,z_n).P \longmapsto x(w).w(z_1).\ldots.w(z_n).P$$

• Sequences:

•
$$x_1, \ldots, x_n \longmapsto \tilde{x}$$

• Empty messages:

•
$$\overline{x}\langle \widetilde{y} \rangle \longrightarrow \overline{x} \text{ iff } \widetilde{y} = \emptyset, x(\widetilde{z}) \longmapsto x \text{ iff } \widetilde{z} = \emptyset$$

Reduction

- Evolution is formally defined as reduction
- The essence of reduction is captured in two axioms:
 - $(\overline{x}\langle y\rangle.P_1 + M_1) \mid (x(z).P_2 + M_2) \longrightarrow P_1 \mid P_2\{y/z\}$
 - $\tau.P + M \longrightarrow P$
- and three rules:
 - from $P_1 \longrightarrow P'_1$ infer $P_1 | P_2 \longrightarrow P'_1 | P_2$
 - from $P \longrightarrow P'$ infer $\nu z \ P \longrightarrow \nu z \ P'$
 - from $P \longrightarrow P'$ and $P \equiv Q$ and $P' \equiv Q'$ infer $Q \longrightarrow Q'$

Structural Congruence

- The axioms of structural congruence (Part I):
 - SC-MAT: $[x = x]\pi . P \equiv \pi . P$
 - SC-SUM-ASSOC: $M_1 + (M_2 + M_3) \equiv (M_1 + M_2) + M_3$
 - SC-SUM-COMM: $M_1 + M_2 \equiv M_2 + M_1$
 - SC-SUM-INACT: $M + \mathbf{0} \equiv M$
 - SC-COMP-ASSOC: $P_1|(P_2|P_3) \equiv (P_1|P_2)|P_3$
 - SC-COMP-COMM: $P_1|P_2 \equiv P_2|P_1$
 - SC-COMP-INACT: $P|\mathbf{0} \equiv P$

Structural Congruence

- The axioms of structural congruence (Part 2):
 - SC-RES: $\nu z \nu w P \equiv \nu w \nu z P$
 - SC-RES-INACT: $\nu z \ \mathbf{0} \equiv \mathbf{0}$
 - SC-RES-COMP:
- $\nu z \ (P_1|P_2) \equiv P_1|\nu z \ P_2, \text{ if } z \notin fn(P_1)$
- SC-REP $!P \equiv P|!P$
- UNFOLDING:
- $A(\tilde{y}) \equiv P\{^{\tilde{y}}/_{\tilde{x}}\} \text{ if } A(\tilde{x}) \stackrel{def}{=} P$

$$A \stackrel{def}{=} (\nu z)a(x, y).\overline{x}\langle z \rangle.\overline{y}.\mathbf{0}$$
$$B \stackrel{def}{=} \overline{a}\langle c, b \rangle.b.\mathbf{0}$$
$$C \stackrel{def}{=} c(m).\mathbf{0}$$
$$P \stackrel{def}{=} A \mid B \mid C$$

Example: Reduction